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Solutions to Chapter 1:

Combinatorics

Solution to Problem 1.1:

a) There are 10 choices for the first place, and then 9 for the 2nd, etc., so that there are 10! =

3.6288× 106 possibilities.

b) Consider just the statistics books: there are 5! = 120 ways of arranging them. Likewise,

there are 3! = 6 ways of arranging the econometrics books and 2! = 2 ways for the German

books. Thus, there are 120 · 6 · 2 = 1440 ways of arranging the books in the order: statistics,

econometrics, German. But, as the subject order is irrelevant, there are 1440 · (3!) = 8640

possible arrangements.

Solution to Problem 1.2:

a) 4!.

b) 1. The
(

4
2,2

)
= 6 possibilities are

# A B

1 {P1, P2} {P3, P4}
2 {P1, P3} {P2, P4}
3 {P1, P4} {P2, P3}
4 {P3, P4} {P1, P2}
5 {P2, P4} {P1, P3}
6 {P2, P3} {P1, P4}

2. That means the distinction between A and B is no longer there, so that there are only

6/2 = 3 groups (either the first three or the last three in the above table.

Solution to Problem 1.3:

a) Of all the 11! = 3.9917 × 107 possible “people” combinations, no distinction can be made

between the Germans, and likewise for the foreigners, so that there are only 11! / (8! 3!) = 165

combinations. (Why is 11!− 8!− 3! wrong?)

b) How many ways can one choose 5 objects from 11? Almost by definition, this is given by(
11
5

)
= 11!

5!·(11−5)! = 462.

c) That means, we must pick 4 (from 8) Germans, and 1 (from 3) foreigners, or
(
8
4

)(
3
1

)
= 70 · 3 =

210.

d) We can pick exactly 1 foreigner, which we just saw has 210 possibilities, or exactly 2 foreigners,

for which there are
(
8
3

)(
3
2

)
= 168 ways, or we pick exactly 3 foreigners, with

(
8
2

)(
3
3

)
= 28 ·1 = 28

ways, so that in total, we have 210 + 168 + 28 = 406 ways. Alternatively, we could write(
11
5

)
−
(
8
5

)
= 406. Similar to Example 1.2, observe that

(
3
1

)(
10
4

)
= 630 is not correct because

duplication is not taken into account.
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e) There are
(
3
1

)
= 3 ways of picking the foreigner, and we must choose 4 of the 8 Germans. If we

pick neither of the feuding Germans, we have
(
6
4

)
= 15 possibilities. If we pick one of them, we

have to choose 3 from 8− 2 Germans, or
(
6
3

)
, as well as one of the two (that is,

(
2
1

)
) feuders.

f) There are
(
3
1

)
ways of picking the foreigner, so we must pick 4 Germans. Either we pick both

“ buddies”, so we must choose 2 more from the remaining 6; or we pick neither of them, so we

must pick 4 from the remaining 6. Thus we have(
3

1

){(
2

2

)(
6

2

)
+

(
2

0

)(
6

4

)}
= 3 (15 + 15) = 90

different ways.

Solution to Problem 1.4: (Note that (1.54) is precisely (1.12), just with a change of notation.) To

prove (1.54) by induction over k, take k = 0 to get

∞∑
n=0

xn =
1

1− x
,

showing that (1.54) is true for k = 0. Now assume the relation holds for k and we need to show

that it holds for k + 1, i.e., that

∞∑
n=0

(
n+ k + 1

k + 1

)
xn =

1

(1− x)
k+2

or, from (1.54) with k, that

∞∑
n=0

(
n+ k + 1

k + 1

)
xn =

1

(1− x)

1

(1− x)
k+1

=
1

(1− x)

∞∑
n=0

(
n+ k

k

)
xn

or, with h = n+ 1, that

(1− x)
∞∑

n=0

(
n+ k + 1

k + 1

)
xn =

∞∑
n=0

(
n+ k + 1

k + 1

)
xn −

∞∑
n=0

(
n+ k + 1

k + 1

)
xn+1

=

(
k + 1

k + 1

)
x0 +

∞∑
n=1

(
n+ k + 1

k + 1

)
xn −

∞∑
h=1

(
h+ k

k + 1

)
xh

= 1 +

∞∑
n=1

[(
n+ k + 1

k + 1

)
−
(
n+ k

k + 1

)]
xn

= 1 +

∞∑
n=1

(
n+ k

k

)
xn

=
∞∑

n=0

(
n+ k

k

)
xn

=
1

(1− x)
k+1

from (1.4) and (1.54) with k. Dividing both sides by 1− x finishes the induction argument.

Solution to Problem 1.5: From (1.11) with t = −1/2 and x = 4a,

1√
1− 4a

= (1− 4a)
−1/2

=
∞∑
i=0

(
−1/2
i

)
(−4a)i

and, from (1.10),

∞∑
i=0

(
−1/2
i

)
(−4a)i =

∞∑
i=0

(
1

2

)2i

(−1)i
(
2i

i

)
(−4a)i =

∞∑
i=0

(
2i

i

)
ai.
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Solution to Problem 1.6: From (1.4), showing

l∑
j=i

(−1)j
(
l

j

)
= (−1)i

(
l − 1

i− 1

)

is equivalent to showing that

l∑
j=i

(−1)j
(
l − 1

j − 1

)
+

l∑
j=i

(−1)j
(
l − 1

j

)
− (−1)i

(
l − 1

i− 1

)
= 0

or
l∑

j=i

(−1)j
(
l − 1

j − 1

)
+

l∑
j=i

(−1)j
(
l − 1

j

)
+ (−1)i−1

(
l − 1

i− 1

)
= 0

or
l∑

j=i

(−1)j
(
l − 1

j − 1

)
+

l∑
j=i−1

(−1)j
(
l − 1

j

)
= 0

or, substituting k = j + 1 into the second term and factoring out a −1,

l∑
j=i

(−1)j
(
l − 1

j − 1

)
+ (−1)

l+1∑
k=i

(−1)k
(
l − 1

k − 1

)
= 0.

Replacing k with j and recalling that, in general,
(
n
k

)
= 0 for n < k, the last term in the second

sum is zero, so that we get

l∑
j=i

(−1)j
(
l − 1

j − 1

)
+ (−1)

l∑
j=i

(−1)j
(
l − 1

j − 1

)
,

which is identically zero, as was to be shown.

Solution to Problem 1.7:

a) From the binomial theorem (1.18),

(1− p)
n−j

=

n−j∑
k=0

(
n− j

k

)
(−1)k pk

so that

Bi,n =
n∑

j=i

n−j∑
k=0

(−1)k
(
n− j

k

)(
n

j

)
pj+k.

From the following tables of the indices,

j k

i 0 1 2 · · · n− i

i+ 1 0 1 · · · n− i− 1
...

n− 1 �
n 0

j l = j + k

i i i+ 1 i+ 2 · · · n

i+ 1 i+ 1 i+ 2 · · · n
...

n− 1 n− 1 �
n n

it is clear that, for l = j + k,

Bi,n =

n∑
l=i


l∑

j=i

(−1)l−j

(
n− j

l − j

)(
n

j

) pl.
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Then Ai,n and Bi,n are equivalent if the coefficients of like powers of p are the same in both

expressions, i.e., if

(−1)l−i

(
l − 1

i− 1

)(
n

l

)
=

l∑
j=i

(−1)l−j

(
n− j

l − j

)(
n

j

)
or, as (

n− j

l − j

)(
n

j

)
=

(n− j)!

(l − j)! (n− l)!

n!

j! (n− j)!

l!

l!
=

l!

(l − j)!j!

n!

l! (n− l)!
=

(
l

j

)(
n

l

)
,

if
l∑

j=i

(−1)j
(
l

j

)
= (−1)i

(
l − 1

i− 1

)
.

This was, however, shown in Problem 1.6, so that Ai,n and Bi,n are indeed equal.

b) To show that Ai,n = Bi,n for all n ∈ N and 1 ≤ i ≤ n, use induction on n− i. For n− i = 0,

i.e., i = n, the assertion is true; one easily checks

An,n = pn = Bn,n. (S-1.1)

It suffices to show Ai,n −Ai+1,n = Bi,n −Bi+1,n for all 1 ≤ i < n because then Ai,n −Bi,n =

Ai+1,n −Bi+1,n and, from (S-1.1), An−1,n −Bn−1,n = 0, etc. For 1 ≤ n < n,

Ai,n −Ai+1,n =
n∑

j=i+1

(−1)j−i

(
n

j

)
pj
((

j − 1

i− 1

)
+

(
j − 1

i

))
+

(
n

i

)
pi

=

n∑
j=i+1

(−1)j−i

(
n

j

)
pj
(
j

i

)
+

(
n

i

)
pi =

n∑
j=i

(−1)j−i

(
n

j

)
pj
(
j

i

)

=
n−i∑
k=0

(−1)k
(

n

i+ k

)
pi+k

(
i+ k

i

)
= pi

n−i∑
k=0

(−1)k
(
n

i

)
pk
(
n− i

k

)

=

(
n

i

)
pi

n−i∑
k=0

(
n− i

k

)
(−p)k =

(
n

i

)
pi(1− p)n−i,

using (1.4) and (1.18). On the other hand, it is easy to see that

Bi,n −Bi+1,n =

(
n

i

)
pi(1− p)n−i,

and we are done.

Solution to Problem 1.8: Substitute i = y − k so that

y∑
i=0

(
2i

y

)(
y

i

)
(−1)i+y

=

0∑
k=y

(
2y − 2k

y

)(
y

y − k

)
(−1)−k

=

y∑
k=0

(
y − k

k

)(
2y − 2k

y − k

)
(−1)−k

,

where the latter equality follows because(
2y − 2k

y

)(
y

y − k

)
=

(2y − 2k)!

y! (y − 2k)!

y!

(y − k)!k!

=
(y − k)!

k! (y − 2k)!

(2y − 2k)!

(y − k)! (y − k)!
=

(
y − k

k

)(
2y − 2k

y − k

)
.

Either binomial coefficient
(
2y−2k

y

)
or
(
y−k
k

)
implies k ≤ y/2 which, for y even or odd, is given by

k ≤ ⌊y/2⌋.
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Solution to Problem 1.9: Expressing the factorials as a binomial coefficient and letting x = y − 1,

n∑
y=1

(n− 1)! y

(n− y)!ny
=

n∑
y=1

(
n− 1

y − 1

)
y!

ny

=

n−1∑
x=0

(
n− 1

x

)
(x+ 1)!

nx+1
=

1

n

n−1∑
x=0

(
n− 1

x

)
(x+ 1)!

nx
.

Next, with i = n− 1− x, this is

1

n

0∑
i=n−1

(
n− 1

n− 1− i

)
(n− i)!

nn−1−i
=

1

nn

n−1∑
i=0

(
n− 1

i

)
(n− i)!ni

=
1

nn

n−1∑
i=0

(n− 1)!

i!
(n− i)ni. (S-1.2)

Splitting up the n− i term gives

1

nn

{
n−1∑
i=0

n!

i!
ni −

n−1∑
i=1

(n− 1)!

(i− 1)!
ni

}
=

(n− 1)!

nn

{
n−1∑
i=0

ni+1

i!
−

n−1∑
i=1

ni

(i− 1)!

}

or, with j = i− 1,

(n− 1)!

nn


n−1∑
i=0

ni+1

i!
−

n−2∑
j=0

nj+1

j!

 =
(n− 1)!

nn

{
nn

(n− 1)!

}
= 1.

Knowing that the sum is one, it follows directly from (S-1.2) that

nn =
n−1∑
i=0

(
n− 1

i

)
(n− i)!ni.

Solution to Problem 1.10:

a) From (1.5), (
r +m+ 1

m

)
=

m∑
j=0

(
(r +m+ 1)− j − 1

m− j

)
=

m∑
i=0

(
r + i

i

)
using the substitution i = m− j and reversing the order of summation.

b) From (1.28), (
n+m

k

)
=

k∑
i=0

(
n

i

)(
m

k − i

)
, k ≤ n, k ≤ m

and with m = n and k = n and the fact that
(

n
n−i

)
=
(
n
i

)
, the result follows.

c) For M = 1,
1∑

i=0

(
N

k + i

)(
1

i

)
=

(
N

k

)
+

(
N

k + 1

)
=

(
N + 1

k + 1

)
from (1.4). Assume that the identity holds for M . Then, for M + 1,

M+1∑
i=0

(
N

k + i

)(
M + 1

i

)
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is equal to (
N

k +M + 1

)
+

M∑
i=0

(
N

k + i

){(
M

i

)
+

(
M

i− 1

)}

=

(
N

k +M + 1

)
+

M∑
i=0

(
N

k + i

)(
M

i

)
+

M∑
i=0

(
N

k + i

)(
M

i− 1

)

=

(
N

k +M + 1

)
+

(
N +M

k +M

)
+

M−1∑
i=0

(
N

k + i+ 1

)(
M

i

)
=

(
N

k +M + 1

)
+

(
N +M

k +M

)
+

(
N +M

k + 1 +M

)
−
(

N

k +M + 1

)
=

(
N +M + 1

k +M + 1

)
,

again from (1.4) and the proof is complete. The second method of proof is as follows. From

the binomial theorem, the lhs of (1.56) is

N∑
i=0

M∑
j=0

(
N

i

)(
M

j

)
xi−j

with coefficient of xk being

N∑
i=0

(
N

i

)(
M

i− k

)
=

M∑
j=0

(
N

k + j

)(
M

j

)
.

The result now follows because the rhs of (1.56) is

N+M∑
i=0

(
N +M

i

)
xi−M ,

with the coefficient of xk being
(
N+M
k+M

)
.

d) Let

A =
r∑

j=0

(
r

j

)
ar−j (b− a)

j 1

j + 1
.

Multiply A by r + 1 and b− a and use(
r

j

)
r + 1

j + 1
=

(r + 1)!

(r − j)! (j + 1)!
=

(
r + 1

j + 1

)
to get, with q = j + 1 and s = r + 1,

(b− a) (r + 1)A =
r∑

j=0

(
r + 1

j + 1

)
ar−j (b− a)

j+1

=
s∑

q=1

(
s

q

)
as−q (b− a)

q

=
s∑

q=0

(
s

q

)
as−q (b− a)

q −
(
s

0

)
as−0 (b− a)

0

= bs − as = br+1 − ar+1,

i.e.,

A =
br+1 − ar+1

(b− a) (r + 1)
.
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Solution to Problem 1.11:

a) From (1.9), it follows that(
r1 + i− 1

i

)
= (−1)i

(
−r1
i

)
and

(
r2 + y − i− 1

y − i

)
= (−1)y−i

(
−r2
y − i

)
,

so that the rhs of the desired equation is

S =

y∑
i=0

(
−r1
i

)(
−r2
y − i

)
(−1)y

(1.28)
= (−1)y

(
− (r1 + r2)

y

)
(1.9)
=

(
r1 + r2 + y − 1

y

)
.

b) The desired equality is equivalent to stating

22N =

N∑
k=0

(
2N − k

N

)
2k =

N∑
i=0

(
N + i

N

)
2N−i = 2N

N∑
i=0

(
N + i

N

)(
1

2

)i

,

or

2N =

N∑
i=0

(
N + i

N

)(
1

2

)i

. (S-1.3)

But (S-1.3) holds, because, from (1.14), it follows that

2n−1 =
n−1∑
i=0

(
n+ i− 1

i

)(
1

2

)i

,

which is the same as (S-1.3) with N = n− 1. A probabilistic proof of this is given in Example

4.13.

c) From (1.4),

n−1∑
i=0

(
2n

i

)
=

n−1∑
i=0

{(
2n− 1

i

)
+

(
2n− 1

i− 1

)}
=

n−1∑
i=0

(
2n− 1

i

)
+

n−2∑
i=0

(
2n− 1

i

)

=

(
2n− 1

n− 1

)
+ 2

n−2∑
i=0

(
2n− 1

i

)
,

and applying this recursively gives

n−1∑
i=0

(
2n

i

)
=

(
2n− 1

n− 1

)
+ 2

n−2∑
i=0

(
2n− 1

i

)

=

(
2n− 1

n− 1

)
+ 2

{(
2n− 2

n− 2

)
+ 2

n−3∑
i=0

(
2n− 2

i

)}
...

=

(
2n− 1

n− 1

)
+ 2

(
2n− 2

n− 2

)
+ 4

(
2n− 3

n− 3

)
+ · · ·+

(
n

0

)
=

n−1∑
i=0

2i
(
2n− 1− i

n− 1− i

)
.

Solution to Problem 1.12:
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a) For n = 0,

N−1∑
i=1

(
N

i

)
(−1)i+1

= (−1)
N∑
i=0

(
N

i

)
(−1)i −

(
N

0

)
(−1)0+1 −

(
N

N

)
(−1)N+1

= (−1) · 0 + 1 + (−1)N

=

{
2, if N is even,

0, if N is odd.

from the binomial theorem (with x = −1 and y = 1). As an aside, note that (1.60) can

equivalently be expressed as

0 =

N∑
i=0

(
N

i

)(
N − i

N

)n

(−1)i+1
, 1 ≤ n ≤ N − 1, (S-1.4)

but that, for n = 0, one has to be careful how 00 is treated. See the remark on page 36.

For n = 1, with (
N

i

)(
N − i

N

)
=

(
N − 1

i

)
,

it follows from the binomial theorem that

N−1∑
i=1

(
N

i

)(
N − i

N

)
(−1)i+1

= 1−
N−1∑
i=0

(
N − 1

i

)
(−1)i = 1.

Before starting the induction proof, we calculate the sum in (1.60) for N = n. For values N =

2, 3, 4, 5, 10 and 20, Maple gives 1
2 ,

7
9 ,

29
32 ,

601
625 ,

1561933
1562500 and 639999985150744579

640000000000000000 ≈ 1−2.3202×10−8,

respectively, so that the identity does not hold for N = n (or, in fact, for any n > N), but

quickly approaches one.

For the induction argument, P (n,N) is equal to

N−1∑
i=1

(
N

i

)(
N − i

N

)n

(−1)i+1

=
N−1∑
i=1

(
N − 1

i

)(
N − i

N

)n

(−1)i+1
+

N−1∑
i=1

(
N − 1

i− 1

)(
N − i

N

)n

(−1)i+1

= P (n+ 1, N) + Z, (S-1.5)

where the first term follows by writing(
N − i

N

)n

=

(
N

N − i

)(
N − i

N

)n+1

and combining into the combinatoric, and the second term in (S-1.5) is labeled Z just for

convenience. Thus, in order for (1.60) to hold, Z must be zero. But, with j = i− 1,

Z =

N−1∑
i=1

(
N − 1

i− 1

)(
N − i

N

)n

(−1)i+1
=

N−2∑
j=0

(
N − 1

j

)(
N − j − 1

N

)n

(−1)j

=

(
N − 1

N

)n N−2∑
j=0

(
N − 1

j

)(
N − j − 1

N − 1

)n

(−1)j

=

(
N − 1

N

)n
1 + (−1)

N−2∑
j=1

(
N − 1

j

)(
N − j − 1

N − 1

)n

(−1)j+1


=

(
N − 1

N

)n

(1− P (n,N − 1)) .
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This last expression is zero if P (n,N − 1) = 1, which holds only for n ≤ N − 2. In that case,

P (n,N) = P (n+ 1, N), which is one from the result for P (1, N), but only if n+ 1 ≤ N − 1

or, again, n ≤ N − 2. The fact that the result also holds for n = N − 1 is not in this proof and

would have to be shown separately. For example, with N = 5 and n = 4, P (n,N) is indeed 1,

but P (n+ 1, N) = 601/625 and Z = 24/625.

An alternative proof which encompasses the n = N − 1 case is as follows. Directly from the

above decomposition, we have

P (n+ 1, N) = P (n,N)−
(
N − 1

N

)n

(1− P (n,N − 1)) ,

so that, changing n+ 1 to n,

P (n,N) = P (n− 1, N)−
(
N − 1

N

)n−1

(1− P (n− 1, N − 1)) . (S-1.6)

From this, P (n,N) can be recursively calculated using the initial conditions P (1, a) = 1 for

a ≥ 2. So, assuming P (n− 1, N) = 1 for n− 1 ≤ (N − 1)− 1, then, from (S-1.6),

P (n,N) = 1−
(
N − 1

N

)n−1

(1− 1) = 1

for n ≤ N − 1. (Notice that, if n ≤ N − 1, then n− 1 ≤ N − 1 and n− 1 ≤ (N − 1)− 1.)

b) Starting from (S-1.4), this can be easily expressed as

0 = N−n
N∑
i=0

(
N

N − i

)
(N − i)

n
(−1)i+1

=

N∑
j=0

(
N

j

)
jn (−1)N−j+1

,

for 1 ≤ n ≤ N − 1, with j = N − i and reversing the summation order. The next exercise

shows that Q (N,N) = −N !, which differs greatly from 0 as N grows!

c) With 00 = 1, M (0) = 1 and it is simple to see that M (1) = 1. Then, for N + 1,

M (N + 1) =

N+1∑
j=1

(
N + 1

j

)
jN+1 (−1)N−j+1

=
N∑
i=0

(
N + 1

i+ 1

)
(i+ 1)

N+1
(−1)N−i

= (N + 1)
N∑
i=0

(
N

i

)
(i+ 1)

N
(−1)N−i

= (N + 1)M (N) = (N + 1)!.

Solution to Problem 1.13: To prove (1.61), i.e., the identity

y∑
i=0

(
n+ y

y − i

)
(−1)i =

(
n+ y − 1

y

)

for n ≥ 1 and y ≥ 0, first note that it holds for y = 0 and y = 1. To use induction, assume (1.61)

holds for y, define hy =
(
n+y−1

y

)
for convenience and use (1.4) to get

y+1∑
i=0

(
n+ (y + 1)

(y + 1)− i

)
(−1)i =

y+1∑
i=0

{(
n+ y

y − i

)
+

(
n+ y

y + 1− i

)}
(−1)i .
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Then, using (1.61) (which is allowed, because we assume it holds for y), the previous expression is,

with j = i− 1,

hy +

y+1∑
i=0

(
n+ y

y + 1− i

)
(−1)i = hy +

(
n+ y

y + 1

)
+

y+1∑
i=1

(
n+ y

y + 1− i

)
(−1)i

= hy +

(
n+ y

y + 1

)
+

y∑
j=0

(
n+ y

y − j

)
(−1)j+1

= hy +

(
n+ y

y + 1

)
+ (−1)

y∑
j=0

(
n+ y

y − j

)
(−1)j

= hy + hy+1 − hy =

(
n+ y

y + 1

)
.

Solution to Problem 1.14:

a) Using (1.6) expressed as
k∑

i=0

(
r + i

i

)
=

(
r + k + 1

k

)
,

the rhs of (1.17) for i = 1 is

(N − n)

(
N

n

)
−

N−n∑
x=1

x

(
n+ x− 1

x

)
= N

(
N

n

)
− n

{(
N

n

)
+

(
N

n+ 1

)}
= N

(
N

n

)
− n

(
N + 1

n+ 1

)
=

(
N

n

){
N − n (N + 1)

n+ 1

}
=

(
N

n

)
N − n

n+ 1
=

(
N

n+ 1

)
,

because

N−n∑
x=1

x

(
n+ x− 1

x

)
=

N−n∑
x=1

(n+ x− 1) · · ·n
(x− 1)!

=
N−n−1∑
x=0

(n+ x) · · ·n
x!

= n

N−n−1∑
x=0

(
n+ x

x

)
= n

(
N

N − n− 1

)
= n

(
N

n+ 1

)
.

Now define Z (i) to be the rhs of (1.17) and assume that (1.17) is valid for i− 1. Then, with(
a
b

)
= 0 for a < b,

Z (i) =
1

i

N−n∑
x=0

(
n+ x− 1

x

)(
N − n− x

i− 1

)
(N − n− x− i+ 1)

=
(N − n)− (i− 1)

i
Z (i− 1)− 1

i

N−n∑
x=0

x

(
n+ x− 1

x

)(
N − n− x

i− 1

)
and

1

i

N−n∑
x=0

x

(
n+ x− 1

x

)(
N − n− x

i− 1

)
=

n

i

N−n∑
x=1

(
n+ x− 1

x− 1

)(
N − n− x

i− 1

)

=
n

i

N−(n+1)∑
x=0

(
n+ x

x

)(
N − (n+ 1)− x

i− 1

)
=

n

i

(
N

(n+ 1) + (i− 1)

)

12



so that

Z (i) =
N − n− i+ 1

i

(
N

n+ i− 1

)
− n

i

(
N

n+ i

)
=

{
(N − n− i+ 1) (n+ i)

(N − n− i+ 1) · i
− n

i

}(
N

n+ i

)
=

(
N

n+ i

)
,

proving (1.17).

b) For the lhs of (1.62),

y∑
i=0

(
N

n+ i

)(
N − n− i

y − i

)
(−1)i

=

(
N

n

)(
N − n

y

)
−
(

N

n+ 1

)(
N − n− 1

y − 1

)
+ · · ·+ (−1)y

(
N

n+ y

)
=

(
N

n+ y

){(
n+ y

y

)
−
(
n+ y

y − 1

)
+

(
n+ y

y − 2

)
− · · ·+ (−1)y

}
=

(
N

n+ y

) y∑
i=0

(
n+ y

y − i

)
(−1)i =

(
N

n+ y

)(
n+ y − 1

y

)
,

from (1.61). For the rhs of (1.62),

N−n∑
i=y

(
n+ i− 1

i

)(
i

y

)
=

1

y!

N−n∑
i=y

(n+ i− 1) (n+ i− 2) · · ·n
(i− y)!

=
n (n+ 1) · · · (n+ y − 1)

y!

N−n∑
i=y

(n+ i− 1) · · · (n+ y)

(i− y)!

=

(
n+ y − 1

y

)N−n−y∑
j=0

(
n+ j + y − 1

j

)
=

(
n+ y − 1

y

)(
N

n+ y

)
,

where the second to last summand is one for i = y, (n+ y) for i = y + 1, etc.

c) Cancel pn from both sides of (1.63) and substitute

(1− p)
i
=

i∑
k=0

(
i

k

)
(−1)k pk

into the lhs of (1.63) and

(1− p)
N−n−i

=

N−n−i∑
k=0

(
N − n− i

k

)
(−1)k pk

into the rhs, to get

N−n∑
i=0

i∑
k=0

(
n+ i− 1

i

)(
i

k

)
(−1)k pk

?
=

N−n∑
i=0

N−n−i∑
k=0

(
N

n+ i

)(
N − n− i

k

)
(−1)k pi+k, (S-1.7)

with equality holding when the coefficients of pc coincide in both polynomials, c = 0, 1, . . . , N−
n. The double sum on the lhs of (S-1.7) is the same as

∑N−n
k=0

∑N−n
i=k , so that, substituting

y = k, the lhs of (S-1.7) is

N−n∑
y=0

(−1)y
N−n∑
i=y

(
n+ i− 1

i

)(
i

y

)
py. (S-1.8)
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The order change in the double sum is easily seen by using the table below. The double

sum
∑N−n

i=0

∑i
k=0 starts with the leftmost column and works downwards, while

∑N−n
k=0

∑N−n
i=k

starts with the top row and counts across.

i

0 1 2 · · · N − n

0 0 0 0

1 1 1

k 2 2

↘
...

N − n

Now consider the rhs of (S-1.7), which by similar reasoning is equal to

N−n∑
y=0

(−1)y
y∑

i=0

(
N

n+ i

)(
N − n− i

y − i

)
(−1)i py. (S-1.9)

The result now follows, because the equality of (S-1.8) and (S-1.9) is the same as (1.62).

A probabilistic proof of (1.63) is given in §3.3.

Solution to Problem 1.15:

a) Listing S-1.1 gives a program which implements the switching method. The following code

was run to simulate the performance.

N=30; s=1000; m = zeros(s,N);

for i=1:s, m(i,:)=permvecswitch(N); end

The subsequent command plot(1:30,mean(store),’r-o’) produced Figure S-1.1, which

shows the mean (over the 1000 simulations) of each column of matrix store. We see clearly

that there is a tendency for the initial elements of the random permutation vector to be

small. Figure S-1.2 shows the frequencies associated with the first element of the output

vector. It was produced with xx=tabulate(store(:,1)); plot(xx(:,1),xx(:,2),’ro’);

grid, where tabulate is a built–in Matlab function which computes the frequencies of elements

in a vector.

function y = permvecswitch(N)

y=1:N;

for i=1:N

p = unidrnd(N);

temp = y(i); y(i) = y(p); y(p)=temp; % switch the two elements

end

Program Listing S-1.1: Returns a random permutation of vector (1, 2, . . . , N) by switching N pairs of elements

b) Listing S-1.2 shows one method of accomplishing this. It simply switches each value which

overlaps with a another randomly chosen element of the vector.

Solution to Problem 1.16: With u =
1

1 + x
, x =

1− u

u
and dx = − 1

u2
du,

I = −
∫ 0

1

1(
1−u
u

)1/2 ( 1
u

) 1

u2
du

=

∫ 1

0

u−1/2 (1− u)
−1/2

du = B

(
1

2
,
1

2

)
=

Γ (1/2) Γ (1/2)

Γ (1)
= π.

This integral (and many others) can also be resolved using contour integration (see, e.g., Bak and

Newman, 1997, p. 138).
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Figure S-1.1: Mean for each of the 30 positions computed from 1000 simulated output vectors of permvecswitch(30)
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Figure S-1.2: Empirical frequencies of the first position of the output vector

Solution to Problem 1.17: First take n = 0, so that I := I0 =
∫∞
0

(
x2 + a

)−1
dx. Trial and error

shows that u = a/
(
x2 + a

)
is a good substitution, with

x = a1/2
(
1− u

u

)1/2

, dx = −a1/2 1
2

(
1− u

u

)−1/2
1

u2
du,

so that

I = −
∫ 0

1

u

a
a1/2

1

2

(
1− u

u

)−1/2
1

u2
du =

a−1/2

2

∫ 1

0

u−1/2 (1− u)
−1/2

du

=
a−1/2

2
B

(
1

2
,
1

2

)
=

a−1/2

2

Γ (1/2) Γ (1/2)

Γ (1)
=

π

2
√
a
.

Exchanging derivative and integral,

dI

da
=

∫ ∞

0

d

da

1

x2 + a
dx = −

∫ ∞

0

(
x2 + a

)−2
dx,

and, more generally,
dnI

dan
= (−1)n n!

∫ ∞

0

(
x2 + a

)−(n+1)
dx.

Now using I = (π/2) a−1/2, it is easy to see that

dnI

dan
=

π

2
(−1)n

(
1

2

3

2

5

2
· · · 2n− 1

2

)
a−(2n+1)/2
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function y=permvec_pure(N)

y = permvec(N); cc=(1:N)’;

olap = (cc == y); % compute a boolean vector where overlap occurred

if sum(olap)>0

oldy = y; % just keep this in case we want to print the results

loc=find(olap); % loc is vector of locations where overlap occurred

for i=1:sum(olap) % switch the offending entry with another element

r=loc(i);

while r==loc(i) % get another element

r=unidrnd(N);

end

temp = y(r); y(r) = y(loc(i)); y(loc(i)) = temp;

end

if 1==1 % show the changes that had to be made

loc

check = [(1:N)’ oldy y]

end

end

Program Listing S-1.2: Output vector y is a permutation of vector (1, 2, . . . , N) with no ’coincidences’

so that, equating the two expressions,∫ ∞

0

1

(x2 + a)
n+1 dx =

π

2

(
1

2

3

4

5

6
· · · 2n− 1

2n

)
a−(2n+1)/2.

Solution to Problem 1.18: From the hint, let

x =
At+B

Ct+D
, so that t =

B −Dx

Cx−A
.

When x = 0, t = 0 if A ̸= 0 and B = 0. When x = 1, t = 1 if − (C −A) = D −B, or A = C +D.

That is, let

x =
(C +D) t

Ct+D
, with dx =

(C +D)D

(Ct+D)
2 dt.

Thus, with 1− x = D (1− t) / (Ct+D),

I =

∫ 1

0

(
(C+D)t
Ct+D

)a−1 (
D(1−t)
Ct+D

)b−1

(
(C+D)t
Ct+D + k

)a+b

(C +D)D

(Ct+D)
2 dt

=

∫ 1

0

ta−1 (1− t)
b−1

(C +D)
a
Db

((C +D) t+ k (Ct+D))
a+b

dt.

Some trial and error reveals that the constraint C + D = −Ck leads to the simplification of the

denominator term as

(C +D) t+ k (Ct+D) = −Ckt+ kCt+ kD = kD = −Ck (k + 1) ,

so that, substituting and simplifying,

I =

∫ 1

0

ta−1 (1− t)
b−1 1

kb (1 + k)
a dt,

which gives the answer.
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Solution to Problem 1.19: Using integration by parts,∫ 1

−1

(x2 − 1)j dx =

∫ 1

−1

(x− 1)j(x+ 1)j dx

=

∫ 1

−1

(x− 1)j d

(
(x+ 1)j+1

j + 1

)
=

[
1

j + 1
(x− 1)j(x+ 1)j+1

]1
−1

−
∫ 1

−1

j

j + 1
(x− 1)j−1(x+ 1)j+1 dx

=(−1) j

j + 1

∫ 1

−1

(x− 1)j−1(x+ 1)j+1 dx.

Repeating this,

=(−1) j

j + 1

∫ 1

−1

(x− 1)j−1 d

(
(x+ 1)j+2

j + 2

)
=−

[
j

(j + 1)(j + 2)
(x− 1)j−1(x+ 1)j+2

]1
−1

+ (−1)2
∫ 1

−1

j(j − 1)

(j + 1)(j + 2)
(x− 1)j−2(x+ 1)j+2 dx

=(−1)2 j(j − 1)

(j + 1)(j + 2)

∫ 1

−1

(x− 1)j−2(x+ 1)j+2 dx

=
...

=(−1)j j!

(2j)!/j!

∫ 1

−1

(x+ 1)2j dx

=(−1)j 1(
2j
j

) [ (x+ 1)2j+1

2j + 1

]1
−1

=
(−1)j22j+1(
2j
j

)
(2j + 1)

.
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Solutions to Chapter 2:

Probability Spaces and Counting

Solution to Problem 2.1:

a) This follows directly from property (iv).

b) As B = A ∪ ĀB, De Morgan’s law gives B̄ = Ā ∩
(
A ∪ B̄

)
= ĀB̄ so that B̄ ⊂ Ā.

c) If A ∩ B implies C, then A ∩ B ⊂ C. From De Morgan’s law and the previous question, this

is the same as C̄ ⊂ Ā ∪ B̄. The result now follows from (ii) and (vi), i.e.,

Pr
(
C̄
)
≤ Pr

(
Ā ∪ B̄

)
≤ Pr

(
Ā
)
+ Pr

(
B̄
)
.

Solution to Problem 2.2:

a) Pr (A ∪B) ≥ Pr (A) and Pr (A ∪B) ≥ Pr (B) or

Pr (A ∪B) ≥ max {Pr (A) ,Pr (B)} = 3/4.

b) Similarly, the upper bound is Pr (AB) ≤ min {Pr (A) ,Pr (B)} = 3/8. From Bonferroni’s

equality Pr (AB) ≥ Pr (A) + Pr (B)− 1 = 1/8.

Solution to Problem 2.3:

(i) Pr (∅) = 0. Define Ai = ∅ ∀i so that ∅ =
∪∞

i=1 Ai and, from additivity,

Pr (∅) = Pr

( ∞∪
i=1

Ai

)
=

∞∑
i=1

Pr (Ai) =
∞∑
i=1

Pr (∅) ,

which is only satisfied for Pr (∅) = 0.

(ii) If A ⊂ B, then Pr (A) ≤ Pr (B). Decompose event B as B = A ∪ ĀB and note that A and

ĀB are disjoint. From the finite additivity property, Pr (B) = Pr (A) + Pr
(
ĀB
)
and, from

nonnegativity of Pr (·), Pr
(
ĀB
)
≥ 0, so that Pr (A) ≤ Pr (B).

(iii) Pr (A) ≤ 1. From (ii) with A ⊂ Ω, Pr (A) ≤ Pr (Ω) = 1.

(iv) Pr (Ac) = 1 − Pr (A). As Ac and A are disjoint but exhaust Ω, from Pr (Ω) = 1 and finite

additivity,

1 = Pr (Ω) = Pr (A ∪Ac) = Pr (A) + Pr (Ac) .

(v) Pr (
∪∞

i=1 Ai) ≤
∑∞

i=1 Pr (Ai). Define disjoint events

B1 = A1 and Bi = Ai \ (A1 ∪A2 ∪ · · · ∪Ai−1) , i > 1,

so that, from additivity, Pr (
∪∞

i=1 Ai) = Pr (
∪∞

i=1 Bi) =
∑∞

i=1 Pr (Bi). From (ii), Pr (Bi) ≤
Pr (Ai), i > 1, so that

∑∞
i=1 Pr (Bi) ≤

∑∞
i=1 Pr (Ai), yielding the result.
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(vi) Pr (A ∪B) = Pr (A) + Pr (B)− Pr (A ∩B). By decomposing A ∪B into three disjoint sets,

A ∪B = (A \B) ∪ (B \A) ∪ (A ∩B)

or, from countable additivity,

Pr (A ∪B) = Pr (A \B) + Pr (B \A) + Pr (A ∩B) . (S-2.1)

Similarly for A and B, A = (A ∩B) ∪ (A \B) and B = (A ∩B) ∪ (B \A), so that countable

additivity and (S-2.1) imply that

Pr (A) + Pr (B) = Pr (A ∩B) + Pr (A \B) + Pr (A ∩B) + Pr (B \A)

= Pr (A ∪B) + Pr (A ∩B) .

Subtracting Pr (A ∩B) from both sides yields the result.

Solution to Problem 2.4: Use of De Morgan’s law and Poincaré’s theorem gives

Pr

(
n∩

i=1

Ai

)
= 1− Pr

(
n∪

i=1

Ac
i

)

= 1−
n∑

i=1

(−1)i+1
Si , Sj =

∑
i1<···<ij

Pr
(
Ac

i1 · · ·A
c
ij

)
.

But De Morgan’s law implies

Pr
(
Ac

i1 · · ·A
c
ij

)
= 1− Pr

(
Ai1 ∪Ai2 · · · ∪Aij

)
,

so that, using the definition of Rj given in the problem,

Sj =

(
n

j

)
−Rj .

Substituting,

Pr

(
n∩

i=1

Ai

)
= 1−

n∑
i=1

(−1)i+1

[(
n

i

)
−Ri

]
= 1−

n∑
i=1

(−1)i+1

(
n

i

)
+

n∑
i=1

(−1)i+1
Ri ,

and the result follows, because of the binomial theorem (1.18), i.e.,

1−
n∑

i=1

(−1)i+1

(
n

i

)
=

n∑
i=0

(−1)i
(
n

i

)
=

n∑
i=0

(−1)i 1n−i

(
n

i

)
= (−1 + 1)

n
= 0.

Solution to Problem 2.5: The second equality in (2.24) follows from the countable additivity property,

the fourth equality follows because the Bi are disjoint, the fifth equality is (A.4) and the sixth

equality follows because the Ai are monotone increasing.

Solution to Problem 2.6:

a) Writing out the terms for when he discards the keys which do not work, we get

n− 1

n
· n− 2

n− 1
· · · · · n− (k − 1)

n− (k − 2)
· 1

n− (k − 1)
= 1/n.

b) If he does not discard, then the probability is (n− 1)
k−1

n−k.

Solution to Problem 2.7:

a) The first person can sit in any of three cars, the same for the second, etc., so thatN = 36 = 729.
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b) Of the four remaining people, they have one of two cars to choose from, or 24 = 16 possibilities,

times
(
6
2

)
= 15 ways of selecting the two people who sit in the first car. Thus, the probability

is 16× 15/729.

Solution to Problem 2.8:

a) There are 3! ways of arranging the men in the first 3 chairs and 3! ways of arranging the

women in chairs 4 through 6. Because we can switch the “block” of men and women, we have

2 · (3!)2 ways, divided by the total number of ways of arranging 6 people in a row, 6!, yielding

0.1.

b) If we view the 3 men as a block, then we have 4 “objects” to arrange (the block of 3 men and

3 individual women), which can be done in 4! ways. Within the block of men, there are 3!

arrangements, so the probability is 4! · 3! / 6! = 0.2.

c) Let both i1, i2, i3 and j1, j2, j3 be all permutations of {1, 2, 3}, let Mi denote the ith man and

Wj denote the jth woman. Then there are 10 possible orderings, seen as follows. The most

obvious is obtained by simply alternating the men and women, i.e.,

Mi1 ,Wj1 ,Mi2 ,Wj2 ,Mi3 ,Wj3

and, reversing it,

Wi1 ,Mj1 ,Wi2 ,Mj2 ,Wi3 ,Mj3 .

In addition, (dropping the subscripts),

MWWMWM, MWMWWM, MMWWMW, WMWWMM,

WMMWMW, MWWMMW,WMWMMW and WMMWWM.

For each, there are 3! ·3! different ways of arranging the men and women, yielding a probability

of 10 · (3!)2 / 6! = 0.5. Have we missed any combinations?

Solution to Problem 2.9: Take b = 4 for simplicity. Imagine placing the 4 beans into the 4 pieces of

cake as follows. The first bean can go anywhere. The second has a 3/4 chance of getting into a

piece of cake without a bean. The next bean has a 2/4 chance, the last a 1/4 chance, giving

3

4

2

4

1

4
=

4

4

3

4

2

4

1

4
=

b!

bb
.

The suggestion K
(1)
b,b /K

(0)
b,b is faulty because it assumes that all of the K

(0)
b,b arrangements are equally

likely, which they are not.

Solution to Problem 2.10: Let B (and G) be the events that you have at least one boy (girl). Then,

from De Morgan’s law,

Pr(B ∪G) = 1− Pr(B ∪G) = 1− Pr(B ∩G) = 1− Pr(B)− Pr(G),

where the last equality follows because B and G are mutually exclusive, assuming n > 0. Assuming

the probability of either gender is 0.5, this is

1−
(
1

2

)n

−
(
1

2

)n

= 1− 1

2n−1
.

Solving, n ≥ 1− ln (1− α) / ln 2.

For example, with α = 0.5, n ≥ 2, while for α = 0.95, n ≥ 6 and, for α = 0.999, n ≥ 11.

Solution to Problem 2.11: Directly,

Pr
(
1st try

)
+ · · ·+ Pr

(
5th try

)
=

1

8
+

70

80

10

79
+

70

80

69

79

10

78
+

70

80

69

79

68

78

10

77
+

70

80

69

79

68

78

67

77

10

76

or
(
80
5

)−1∑5
i=1

(
10
i

)(
70
5−i

)
or 1− Pr (no underweight found) = 1−

(
10
0

)(
70
5

)
/
(
80
5

)
= 0.49655.
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Solution to Problem 2.12: There are
(
3
1

)(
97
3

)
ways of selecting 1 of the three winning tickets and 3 of

the 97 non–winning tickets; dividing this by the total number of ways of choosing 4 tickets out of

the set of 100, or
(
100
4

)
, gives the probability of exactly one winning ticket. As having 1, 2, or 3

winning tickets are mutually exclusive events, probabilities add. Thus

p =

(
3
1

)(
97
3

)
+
(
3
2

)(
97
2

)
+
(
3
3

)(
97
1

)(
100
4

) =
941

8085
≈ 0.1164.

In most problems involving “at least”, it is easier to work with the complement, which in this case

is that no winning tickets are drawn. The probability of this is easily seen to be

q = 1− p =

(
3
0

)(
97
4

)(
100
4

) .

An alternative method of solution is as follows. Instead of imagining choosing 4 tickets from the

set of 100, imagine that the winning tickets are not yet determined, and are first separated into

a group of four, which are yours, and the remaining 96. Now, the characteristic of “winning” is

applied randomly to three of the 100 tickets. There are
(
4
1

)(
96
2

)
ways of applying it to one of the

four purchased tickets and two of the other 96, etc., so that

p =

(
4
1

)(
96
2

)
+
(
4
2

)(
96
1

)
+
(
4
3

)(
96
0

)(
100
3

) = 1−
(
96
3

)(
4
0

)(
100
3

) ,

where the calculation involving the complement is also shown.

Now consider using Poincaré’s theorem (2.11). First let

Ai = {you purchase winning ticket i} , i = 1, 2, 3.

Then

p = Pr (A1 ∪A2 ∪A3)

=

(
3

1

)
Pr (A1)−

(
3

2

)
Pr (A1A2) + Pr (A1A2A3)

= 3 · 4

100
− 3 · 4

100

3

99
+

4

100

3

99

2

98
=

941

8085
≈ 0.1164.

Alternatively, let Bi = {ticket i is a winning ticket}, i = 1, 2, 3, 4. Then

p = Pr (B1 ∪B2 ∪B3 ∪B4)

=

(
4

1

)
Pr (B1)−

(
4

2

)
Pr (B1B2) +

(
4

3

)
Pr (B1B2B3)− Pr (B1B2B3B4)

= 4 · 3

100
− 6 · 3

100

2

99
+ 4 · 3

100

2

99

1

98
+ 0.

Solution to Problem 2.13: If n < r, then p = 1. For n ≥ r, letting event Ai be that urn i is empty,

i = 1, . . . , r, it follows from Poincaré’s theorem that

p = 1− Pr

(
r∪

i=1

Ai

)

= 1−
r∑

i=1

Pr (Ai) +

r∑
i=1

r∑
j=i+1

Pr (AiAj)− · · ·+ (−1)k Pr (A1A2 · · ·Ar) , (S-2.2)

where Pr (Ai) = (1− pi)
n
, Pr (AiAj) = (1− pi − pj)

n
, i ̸= j, etc. Because the pi are distinct, it

appears as though little simplification is possible. There is, however, a recursive expression available

which is computationally less burdensome than (S-2.2); see, e.g., Ross (1997, pp. 123-124).
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Solution to Problem 2.14:

a) Possible outcomes are gb, gb, gg and bb with respective probabilities p (1− p), (1− p) p, p2 and

(1− p)
2
. Thus, the probability of at least one girl is p2 + 2p (1− p) = p (2− p).

b) The probability of having exactly k girls with order relevant is pk (1− p)
n−k

; it is easy to see

that there are n− k + 1 ways in which the k girls are all in a row. Thus, with i = j − k,

P (p, n, k) =

n∑
j=k

(n− j + 1) pj (1− p)
n−j

= pk (1− p)
n−k

n−k∑
i=0

(n− i− k + 1)

(
p

1− p

)i

,

which can also be expressed as

P (p, n, k) = pk (1− p)
n−k

n−k∑
i=0

i∑
j=0

(
p

1− p

)j

.

Then, with a = p/ (1− p),

n−k∑
i=0

i∑
j=0

aj =
n−k∑
i=0

1− ai+1

1− a
=

1

1− a

(
(n− k + 1)−

n−k∑
i=0

ai+1

)

=
1

1− a

(
(n− k + 1)− a− an−k+2

1− a

)
=

1− p

1− 2p

(
(n− k + 1)−

(
p

1− 2p

)(
1−

(
p

1− p

)n−k+1
))

so that, for p ̸= 1/2,

P (p, n, k) = pk
(1− p)

n−k+1

1− 2p

(
n− k + 1− p

1− 2p

(
1−

(
p

1− p

)n−k+1
))

.

Similarly, for p = 1/2,

P

(
1

2
, n, k

)
= 2−n

n∑
j=k

(n− j + 1)

= 2−n

[
(n+ 1) (n− k + 1)− 1

2
(n (n+ 1)− k (k − 1))

]
= 2−(n+1) (n− k + 2) (n− k + 1) .

For n = 2 and k = 1, Maple admirably shows that P (p, 2, 1) = p (2− p). For n = 7 and k = 3,

Maple gives

P (p, 7, 3) = p3
(
3p4 − 12p3 + 21p2 − 16p+ 5

)
.

Note that, in both cases, the special formula for p = 1/2 is not needed. Also, P (1/2, 7, 3) =

15/128 ≈ 0.117.

The left side of Figure S-2.1 plots P (p, 7, 3) versus p (dashed line with × markings) along

with the result from Example 2.7 (solid line with ◦ markings), i.e., the probability of getting

at least 3 girls in a row when having 7 children (but ALL the girls do NOT have to be in a

row, just 3 of them).

Solution to Problem 2.15:

a) As there is only one correct permutation, the probability is 1/n!.
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Figure S-2.1: Left: Probability P (p, 7, 3) (dashed) versus p. Right: Output from calling permvecsim(20,200). Because

the approximation using e−1 is so good for N = 20, the circles and plus signs cannot be distinguished in the printed version.

b) This is just (2.18).

c) 1− Pr (k = 0) ≈ 1− e−1 = 0.632 for large n.

Solution to Problem 2.16: Program S-2.1 does this. Sample graphical output is given in the right

side of Figure S-2.1, obtained from calling permvecsim(20,200).

Solution to Problem 2.17: Define C to be the event such that the hand contains the Ace and King of

Clubs (♣). Likewise for D (Diamonds, ♢), H (Hearts, ♡) and S (Spades, ♠). We need to compute

Pr (C ∪D ∪H ∪ S) for which we can use (2.11). For the 4 events, we write

Pr (C ∪D ∪H ∪ S) = Pr (C) + Pr (D) + Pr (H) + Pr (S)

−Pr (CD)− Pr (CH)− Pr (CS)

−Pr (DH)− Pr (DS)− Pr (HS)

+Pr (CDH) + Pr (CDS) + Pr (CHS)

+Pr (DHS)− Pr (CDHS) ,

and the event C can occur in any of
(
50
11

)
ways, because we know 2 of the cards and must pick the

remaining 11 from the remaining 50. Event CD can occur in
(
48
9

)
ways, because we know 4 cards

and must pick the remaining 9 from the remaining 48. Likewise for event CDH, which can occur

in any of
(
46
7

)
ways, and event CDHS, which can occur in any of

(
44
5

)
ways. Notice that event D

can occur in as many ways as event C and similarly for the rest, so that the probability is given by

4
(
50
11

)
− 6
(
48
9

)
+ 4
(
46
7

)
−
(
44
5

)(
52
13

) =

(
52

13

)−1 4∑
i=1

(−1)i+1

(
4

i

)(
52− 2i

13− 2i

)
=

9895443

45023650
= 0.21978.

Solution to Problem 2.18: The second child’s sex is (presumably) independent of that of the first

child, so it is just Pr(boy) = 0.5.

Solution to Problem 2.19: If B stands for boy and G for girl, then the relevant or conditional sample

space is {B,B} , {G,B} or {B,G}, so that the probability of 2 boys is 1/3.

Solution to Problem 2.20: Let the event Ri denote the event that the first red ball is appears on the

ith draw. If you draw first, then your chances of winning are∑
i=1,3,5,7

Pr (Ri) ,
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function [simprob, trueprob, approxprob] = permvecsim(N,sim)

record=zeros(1,sim); cc=(1:N)’;

for i=1:sim

y = permvec(N);

record(i)=sum(cc == y);

end

maxr = max(record); g=hist(record,maxr+1); simprob=g/sim;

trueprob=zeros(1,maxr+1); approxprob=trueprob;

for m=0:maxr

v=2:(N-m); v=fact(v); v=1./v;

pm=(-1).^(2:(N-m)); fm = fact(m);

trueprob(m+1)=sum(v.*pm)/fm;

approxprob(m+1) = exp(-1)/fm;

end

plot(0:maxr,trueprob,’linewidth’,4,’linestyle’,’o’, ...

’color’,’r’,’marker’,’o’), hold on

plot(0:maxr,approxprob,’linewidth’,3,’linestyle’,’o’, ...

’color’,’g’,’marker’,’+’)

plot(0:maxr,simprob,’linewidth’,2,’linestyle’,’o’, ...

’color’,’b’,’marker’,’v’), hold off

legend(’True’,’e^{-1} Approx’,’Simulated’), set(gca,’fontsize’,16)

function f=fact(x), f=round( gamma(x+1) );

Program Listing S-2.1: Simulates the number of coincidences and compares the empirical frequencies to the true

probabilities (2.18) and to the approximation e−1/m!. Assumes program permvec exists, which is given in Listing 1.2

because the eventsRi, i = 1, . . . , 8 are disjoint. The probability that your friend wins is
∑

i=2,4,6,8 Pr (Ri),

but, as the events Ri, i = 1, . . . , 8 also partition the entire sample space, we know that∑
i=2,4,6,8

Pr (Ri) = 1−
∑

i=1,3,5,7

Pr (Ri) .

We have

Pr (R1) =
3

10
, Pr (R3) =

7

10

6

9

3

8
, Pr (R5) =

7

10

6

9

5

8

4

7

3

6
, Pr (R7) =

7

10

6

9

5

8

4

7

3

6

2

5

3

4
,

so that ∑
i=1,3,5,7

Pr (Ri) =
7

12
>

1

2
,

so it is advantageous to draw first.

Solution to Problem 2.21: If you see a red dot, then the relevant, or conditional sample space is 3

events: either you see one side of the red-red card, the other side of the red-red card, or the red

dotted side of the red-black card, so that the probability that the other side has a black dot is
1
3 . More formally, the sample space could be written as follows. As there are 6 sides which could

be displayed, there are 6 events that can happen. With R for red, and B for black, we have

{RR} , {RR} , {RB} , {BR} , {BB} , {BB}, where the first letter corresponds to the visible side of

the card and the second letter to the covered side. If you see a red dot, that means the events

starting with B, namely {BB}, {BB} and {BR}, are not possible. The reduced sample space is

the 3 events {RR} , {RR} and {RB}, so the probability of the covered side being black is clearly

1/3.
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Solution to Problem 2.22:

a) Because games are independent,

Pr (A) = p1 + q1q2p1 + q1q2q1q2p1 + · · · = p1

∞∑
i=0

(q1q2)
i
=

p1
1− q1q2

and, likewise, Pr (B) = p2q1
∑∞

i=1 (q1q2)
i−1

= p2q1
1−q1q2

= 1− Pr (A).

b) This just means that p1 = p2q1 or p2 = p1/ (1− p1). Condition 0 < p2 < 1 implies p1 < 1− p1
or that p1 < 0.5. As p1 → 0.5, for a fair game, p2 must approach one, which adjusts for the

fact that person A plays first.

Solution to Problem 2.23: Both sides are equal to
(
m+b−1
b−1

)
. To see this for the lhs, in (2.3), replace

r by b and n by m. For the rhs, in (1.32), replace n by k and r by m.

Solution to Problem 2.24: In this case, Sj reduces to

Sj =
∑

i1<···<ij

Pr
(
Ai1 · · ·Aij

)
=

∑
i1<···<ij

pj =

(
n

j

)
pj ,

so that

pm,n =
n∑

i=m

(−1)i−m

(
i

i−m

)(
n

i

)
pi.

This gives p2,4 = 6p2 − 3· 4p3 + 6p4, while in terms of complements, p2,4 = 6p2 (1− p)
2
, which are

clearly equal. Similarly, P2,4 = 6p2− 2· 4p3 +3p4 or, in terms of complements, P2,4 = 1− (1− p)
4−

4p (1− p)
3
, which are easily shown to be equal.

Solution to Problem 2.25: We have:

1. For 3 cells empty: There are
(
R
1

)
= 4 possible ways of picking the nonempty cell.

2. For 2 cells empty: If the balls are indistinguishable, there are
(
R
2

)
= 6 ways to pick the two

empty cells. For the nonempty cells, there are K
(1)
n,r−2 =

(
n−1
r−3

)
= 2 distributions, either a cell

has one ball, the other two; or visa versa. Factoring in ball distinguishability, there is
(
3
1

)
ways

of choosing “the lone ball”.

3. For 1 cell empty: If the balls are indistinguishable, there are
(
R
1

)
= 4 ways to pick the empty

cell. For the nonempty cells, there is clearly only one possible arrangement, i.e., each cell has

one ball (Or, K
(1)
n,r−1 =

(
n−1
r−2

)
= 1.) Factoring in ball distinguishability, this is multiplied by

n! = 6.

4. No cells empty cannot occur.

This gives 4+6 · 2 · 3+4 · 6 = 64 possibilities. If both balls and cells are indistinguishable, then one

of three configurations can arise, {• • • | · | · | ·}, or {•• | • | · | ·} or {• | • | • | ·}, with respective

probabilities 4/64, 36/64 and 24/64.
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Solutions to Chapter 3:

Symmetric Spaces and Conditioning

Solution to Problem 3.1:

a) Assume t = 5 and that, contrary to the initial setup, the order of the throws is relevant. By

the nature of the experiment, all 65 outcomes are equally likely. Say sides 1 and 2 are deemed

not to occur and denote throw i as wi. Then, all possible outcomes of the five throws such

that a 1 or 2 never occurs could be listed in table:

w1 w2 w3 w4 w5

3 3 3 3 3
...

...
...

...
...

.

Instead, we could make a table showing which of the wi were 3, 4, etc., as

3 4 5 6

w1 w2 w3 w4, w5
.

As all four sides must be covered, one throw will result in a side which already occurred, with

4 possibilities. If an extra column is added to the above table which picks up the “redundant

side”, then there will be one wi per box, with 5! ways of permuting them. As we are ultimately

not concerned with order, this gets divided by two to account for the redundancy involved for

the side with two occurrences. Finally, from symmetry, the same argument applies for any 2

chosen sides which should not occur, i.e., for all
(
6
2

)
= 15 choices. Thus,

p5 = Pr (exactly 2 sides do not occur) =
15 · 5! · 4 / 2

65
=

25

54
.

For t = 6, the “redundant” two throws are either such that two sides each occur twice, or one

side occurs three times. Thus,

p6 =

(
6
2

)
· 6! ·

(
4
2

)
/ 22

66
+

(
6
2

)
· 6! ·

(
4
1

)
/ 3!

66
=

325

648
.

b) Let events Bi = {side i does not appear}, i = 1, 2, . . . , 6, so that Pr (Bi) = (5/6)
t
and

Pr (B1 · · ·Bj) =

(
6

j

)
(1− j/6)

t
.

Let E2 be the event that neither a 1 nor 2 occurs but 3,4,5,6 all occur at least once and

let Li = B1B2 · · ·Bi. Note that, for example, L2 is the event that neither 1 nor 2 occurs,

irrespective of the other numbers. Then L2 can be written as the disjoint union of E2 and

L2 ∩ (B3 ∪ · · · ∪B6), i.e.,

Pr (L2) = Pr (E2) + Pr ((L2 ∩B3) ∪ · · · ∪ (L2 ∩B6)) ,
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so that, from Poincaré’s theorem and the exchangeability of the Bi,

Pr (E2) = Pr (L2)−
(
4

1

)
Pr (L2 ∩B3) +

(
4

2

)
Pr (L2 ∩B3 ∩B4)− · · ·

=
6∑

i=2

(−1)i−2

(
4

i− 2

)
Pr (Li)

=
6∑

i=2

(−1)i−2

(
4

i− 2

)
(1− i/6)

t
.

As there are
(
6
2

)
= 15 ways of picking two sides,

pt = 15
6∑

i=2

(−1)i−2

(
4

i− 2

)
(1− i/6)

t
=

6∑
i=2

(−1)i−2

(
i

2

)(
6

i

)
(1− i/6)

t
,

because
6!

2!4!

4!

(i− 2)! (6− i)
=

i!

2! (i− 2)!

6!

i! (6− i)
=

(
i

2

)(
6

i

)
.

Solution to Problem 3.2:

a) From basic principles,

p6n (n) =

(
6n

n,n,n,n,n,n

)
66n

=
(6n)!

(n!)
6
66n
≈ (2π)

1/2
(6n)

6n+1/2
e−6n

(2π)
6/2

n6(n+1/2)e−6n 66n
= (2π)

−5/2
61/2n−5/2.

The exact answer for n = 3 is

p18 =
14889875

1 10199 60576
= 1.35× 10−3.

The relative percentage errors

100
(2π)

− 5
2
√
6n− 5

2 − (6n)!

(n!)666n

(6n)!

(n!)666n

for n = 1, 2, . . . , 20 are computed to be

t 1 2 3 4 5 6 7 8 9 10

RPE 60 27 18 13 10.2 8.4 7.2 6.3 5.5 5.0

t 11 12 13 14 15 16 17 18 19 20

RPE 4.5 4.1 3.8 3.5 3.3 3.1 2.9 2.7 2.6 2.5

.

b) Clearly, if t ≤ 17, then pt = 0. Otherwise, defining

Bi = { side i occurs zero or once or twice} ,

we have

pt = Pr (all 6 sides occur at least twice) = 1− Pr

(
6∪

i=1

Bi

)
.

Letting Ni = # of times side i occurs, event Bi can be decomposed into the three disjoint

events {Ni = 0} , {Ni = 1} and {Ni = 2}, so that

Pr (Bi) =

(
5

6

)t

+

(
t

1

)(
1

6

)(
5

6

)t−1

+

(
t

2

)(
1

6

)2(
5

6

)t−2

.
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Similarly, in abbreviated notation for the Ni, event B1B2 can be decomposed into the 32

disjoint events (grouped in 6 categories)

{00} ,
{11} ,
{22} ,
{01} , {10} ,
{02} , {20} ,
{12} , {21} ,

so that Pr (B1B2) is given by

=

(
4

6

)t

+

(
t

1, 1, t− 2

)(
1

6

)2(
4

6

)t−2

+

(
t

2, 2, t− 4

)(
1

6

)4(
4

6

)t−4

+2

(
t

1

)(
1

6

)(
4

6

)t−1

+ 2

(
t

2

)(
1

6

)2(
4

6

)t−2

+ 2

(
t

1, 2, t− 3

)(
1

6

)3(
4

6

)t−3

.

Event B1B2B3 can be decomposed into the 33 disjoint events (grouped in 10 categories)

1. {000} ,
(

3

3, 0, 0

)
of them,

2. {111} ,
(

3

0, 3, 0

)
of them,

3. {222} ,
(

3

0, 0, 3

)
of them,

4. {001} , {010} , {100} ,
(

3

2, 1, 0

)
of them,

5. {002} , {020} , {200} ,
(

3

2, 0, 1

)
of them,

6. {011} , {101} , {110} ,
(

3

1, 2, 0

)
of them,

7. {112} , {121} , {211} ,
(

3

0, 2, 1

)
of them,

8. {122} , {212} , {221} ,
(

3

0, 1, 2

)
of them,

9. {022} , {202} , {220} ,
(

3

1, 0, 2

)
of them,

10. {012} , {102} , {120} , {021} , {201} , {210} ,
(

3

1, 1, 1

)
of them,

so that Pr (B1B2B3) is given by

=

(
3

6

)t

+

(
t

1, 1, 1, t− 3

)(
1

6

)3(
3

6

)t−3

+

(
t

2, 2, 2, t− 6

)(
1

6

)6(
3

6

)t−6

+3

(
t

0, 0, 1, t− 1

)(
1

6

)1(
3

6

)t−1

+ 3

(
t

0, 0, 2, t− 2

)(
1

6

)2(
3

6

)t−2

+3

(
t

0, 1, 1, t− 2

)(
1

6

)2(
3

6

)t−2

+ 3

(
t

1, 1, 2, t− 4

)(
1

6

)4(
3

6

)t−4

+3

(
t

1, 2, 2, t− 5

)(
1

6

)5(
3

6

)t−5

+ 3

(
t

0, 2, 2, t− 4

)(
1

6

)4(
3

6

)t−4

+6

(
t

0, 1, 2, t− 3

)(
1

6

)3(
3

6

)t−3

. (S-3.1)
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It is becoming clear that, for Pr (B1B2B3), we need to consider all nonnegative integer solutions

to
∑3

i=1 xi = 3, for which there are
(
3+3−1

3

)
= 10, using (2.1). (Similarly, for Pr (B1B2), there

are six nonnegative integer solutions to
∑3

i=1 xi = 2.) For each of the 10 solutions, there

are
(

3
x1,x2,x3

)
combinations such that x1 of the Ni are zero, x2 of the Ni are one and x3 of

the Ni are two. Then, for each of the nonnegative integer solutions, a term in (S-3.1) can be

determined as (
3

x1, x2, x3

)(
t

S1, S2, S3, t− S

)(
1

6

)S (
3

6

)t−S

,

where S =
∑3

i=1 Si, (S1, S2, S3) = sort (V ) (ascending) and V is a vector consisting of x1 zeros,

x2 ones and x3 twos. In this way, the first element of each row of the 27 listed expressions

above would be taken.

One problem with this formulation is that we would now need an algorithm which can list out

the
(
3+3−1

3

)
nonnegative integer solutions. This could be achieved by a double FOR loop:

FOR x1=0:3

FOR x2=0:(3-x1)

x3=3-x1-x2

--- now use these x1 x2 and x3 ---

END

END

This was just for the Pr (B1B2B3) term, but the generalization to Pr (B1 · · ·Bj) is now straight-

forward. In particular, we need the nonnegative integer solutions to
∑3

i=1 xi = j, for which

there are
(
j+3−1

j

)
=
(
j+2
j

)
= (j + 2) (j + 1) /2. For each of them, there are

(
j

x1,x2,x3

)
combina-

tions such that x1 of the Ni are zero, x2 of the Ni are one and x3 of the Ni are two. Then, for

each of these nonnegative integer solutions, the terms in Pr (B1 · · ·Bj) can be expressed as(
j

x1, x2, x3

)
t!

S1! · · ·Sj ! (t− S)!

(
1

6

)S (
6− j

6

)t−S

,

where S =
∑j

i=1 Si, (S1, . . . Sj) = sort (V ) (ascending) and V is a vector consisting of x1 zeros,

x2 ones and x3 twos. The program to traverse the (j + 2) (j + 1) /2 solutions would look like

FOR x1=0:j

FOR x2=0:(j-x1)

x3=j-x1-x2

--- now use these x1 x2 and x3 ---

END

END

A computer program to compute pt and also simulate the problem is given in Listing S-3.1.

Figure S-3.1 plots pt versus t with the inscribed circles indicating the result of simulating the

result for each shown value of t using 5,000 replications. It was constructed with the following

Matlab instructions:

pt=[];

for i=18:2:60

pt = [pt sixes(i,0)];

end

plot(18:2:60,pt), hold on

sim=5000; sv=[]; for i=20:4:60; i, sv=[sv sixes(i,sim)]; end

plot(20:4:60,sv,’ro’)
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function pt = sixes(t,sim)

if sim>0

count=0;

for i=1:sim

u=unidrnd(6,t,1); % t throws of the die

tab=tabulate(u); % counts how many ones, how many twos, etc.

f=tab(:,2)’; % just the part we need from the output

count=count+all(f>=3); % check if all sides were observed

end % at least 3 times

pt = count/sim; % approximate the true probability

else % Compute exact probability using Poincare’s theorem

bigsum = 0;

for j=1:5

bigsum=bigsum + (-1)^(j+1) * c(6,j) * bigterm(j,t);

end

pt = 1-bigsum;

end

function bt = bigterm(j,t) % computes Pr(B_1 ... B_j)

bt=0;

for x1=0:j

for x2=0:(j-x1)

x3=j-x1-x2;

f1 = fact(j) / fact(x1) / fact(x2) / fact(x3);

thezeros=zeros(1,x1); theones=ones(1,x2); thetwos=2*ones(1,x3);

V = [thezeros theones thetwos];

Svec = sort(V); S=sum(Svec);

denom=1; for i=1:j, denom=denom*fact(Svec(i)); end

denom=denom*fact(t-S);

f2 = fact(t) / denom;

f3 = (1/6)^S * ((6-j)/6)^(t-S);

bt = bt + f1 * f2 * f3;

end

end

function f=fact(t) % simple, local, factorial function

if t==0, f=1; else f=t*fact(t-1); end

Program Listing S-3.1: A fair, six–sided die is rolled t times. This computes the probability that all 6 sides occur at

least 3 times. If sim > 0, then it simulates instead of computing the theoretical values
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Figure S-3.1: Solid line is the exact probability that all 6 sides occur at least 3 times. Circles indicate result of simulation

using 5,000 replications

Solution to Problem 3.3:

a) 11!, because, if they were in a row, there would be 12!, but the rotation of the table doesn’t

matter.

b) If each couple sits next to one another, we can imagine the 12 people as 6 objects to be placed

around a table with 6 places, and there are 5! ways of doing this. As each couple can “switch

chairs”, the answer is (26 · 5!) / 11! = 1.924× 10−4.

Solution to Problem 3.4:

a) Assume A sits first at the empty table and then B takes a seat. Of the n− 1 possible chairs,

there are two which B could take such that A and B sit together, i.e., the probability is 2/(n−1.
Alternatively, and more generally applicable, treating A and B as a block the probability is
2(n−2)!
(n−1)! = 2

n−1 .

b) Similar to the latter method in the previous question, i.e., treating [A,B] and [C,D] as blocks,
22(n−3)!
(n−1)! = 4

(n−2)(n−1) . This can be also obtained by using the law of total probability. Let

AB be the event that A and B sit together, which is 2/(n− 1). Then

Pr (AB ∩ CD) = Pr (AB) Pr(CD | AB).

Assume C is the third person to take a seat. To calculate Pr(CD | AB), we have to consider

if C sits on either side of the pair AB (with probability 2/(n− 2)), or not. That is,

Pr(CD | AB) =
2

n− 2

1

n− 3
+

n− 4

n− 2

2

n− 3
=

2

n− 2

so that

Pr (AB ∩ CD) =
2

n− 1

2

n− 2
=

4

(n− 1) (n− 2)
.

c) The two possibilities are not equally likely. Assume the first person to sit is a boy at the 12:00

position, as in Figure 3.9, followed by the second boy. In order to alternate, he has to sit at the

6:00 position whereas to not alternate, he can sit either at 3:00 or 9:00. The chances are double

that they do not alternate, so the correct probability is 1/3. Another way of seeing this is to

“open the table” into a row and consider the 4!/ (2!2!) = 6 possibilities, i.e., BBGG, BGBG,

BGGB, GGBB, GBGB and GBBG. When “re-connecting”, only 2 of the 6 combinations yield

alternating sequences.
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d) Because they must alternate, take each boy-girl pair as a block. These have (n− 1)! ways of

being arranged. The first girl can be paired with any of n boys, the second with any of n− 1,

etc., yielding (n− 1)! · n! / (2n− 1)!.

Solution to Problem 3.5:

a) Event K = n means all couples are seated together. This is just (3.3) with i = n, i.e.,

Pr (C1 · · ·Cn) = 2n
(n− 1)!

(2n− 1)!
.

For K = n− 1, there are n ways of choosing the “lone” couple, i.e., the one couple not sitting

together. Then, there are 2n−1 ways of shuffling the n− 1 other couples internally and n+ 1

’blocks’ to arrange around the table. But this also counts the possibilities in which the lone

couple is together, for which there are 2n−12(n− 1)! such arrangements. Thus,

Pr(K = n− 1) = n
2n−1 (n!− 2 (n− 1)!)

(2n− 1)!
=

n!2n−1 (n− 2)

(2n− 1)!
,

which agrees with (3.4).

b) To compute the probability of no couples, the complement “at least one couple” can be used,

i.e., from Poincaré’s theorem and (3.3),

Pr(K = 0) = 1− Pr(C1 ∪ . . . ∪ Cn)

= 1−
n∑

i=1

(−1)i+1

(
n

i

)
2i(2n− i− 1)!

(2n− 1)!

=
n∑

i=0

(−1)i
(
n

i

)
2i(2n− i− 1)!

(2n− 1)!
,

which agrees with (3.4).

For k = 1, there are n ways of choosing the lucky couple to sit together and this couple has 2

ways to sit. The other 2n− 2 people must be arranged in such a way that no other couple is

seated together. The number of possibilities can be calculated in the same way as in the case

k = 0, with the difference that now the 2n− 2 people will be arranged in a row, because their

“ends” do not touch (they are separated by the lucky couple) and thus cannot be rotated.

This yields, using j = i+ 1,

Pr(K = 1) =
2n

(2n− 1)!

(
(2n− 2)!−

n−1∑
i=1

(−1)i+1

(
n− 1

i

)
2i (2n− 2− i)!

)

= 2n

 1

2n− 1
−

n∑
j=2

(−1)j
(
n− 1

j − 1

)
2j−1 (2n− 1− j)!

(2n− 1)!


= n

 2

2n− 1
+

n∑
j=2

(−1)j+1

(
n− 1

j − 1

)
2j

(2n− 1− j)!

(2n− 1)!


= n

n∑
j=1

(−1)j+1

(
n− 1

j − 1

)
2j (2n− 1− j)!

(2n− 1)!

which agrees with (3.4).

c) First observe that, if k is negative or k > n, then Ck,n = 0. For the starting values, if n = 1,

then the couple must sit together, so that C0,1 = 0 and C1,1 = 1. If n = 2, then, denoting the

first couple as A1 and A2 and the second as B1 and B2,
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i) if k = 0, there are two possibilities, (starting at 12:00 and going clockwise),

A1B1A2B2, and A1B2A2B1 ;

ii) if k = 2, there are four possibilities,

A1A2B1B2, A2A1B1B2, A1A2B2B1, A2A1B2B1;

iii) the case k = 1 cannot occur.

Note how the rotation of the table reduces the number of possibilities. Summarizing,

C0,1 = 0, C1,1 = 1, C0,2 = 2, C1,2 = 0, C2,2 = 4.

Imagine the couples coming to the table one after another. For n > 2, consider how persons

P1 and P2 making up the nth couple were seated so that there are exactly k couples sitting

together. Either:

i) There were exactly k − 1 couples sitting together previous to the nth couple’s arrival and

P1 and P2 sat down next to each other, but not “between any couples”, i.e., such that

they do not separate any other couple. Of the 2n− 2 spaces at the table, k− 1 cannot be

used, so they have

2 (2 (n− 1)− (k − 1)) = 2 (2n− k − 1)

ways to do this.

ii) There were exactly k couples sitting together previous to the nth couple’s arrival and

either

1. persons P1 and P2 sat down together between a couple, with 2k ways, or

2. P1 sat down not between any of the k couples in one of 2 (n− 1)− k ways and P2 sat

down not between any of the k couples and not next to P1 in one of 2 (n− 1) + 1 −
(k + 2) ways. Multiplying gives (2n− k − 2) (2n− k − 3) ways.

iii) There were exactly k+ 1 couples sitting together previous to the nth couple’s arrival; P1

sits between one of the couples (with k + 1 ways) and P2 sits neither between any of the

remaining k couples, nor next to P1 (with 2 (n− 1)+ 1− (k + 2) ways); multiplying these

two expressions and then doubling them (because the roles of P1 and P2 are different and,

thus, distinguishable) gives

2 (k + 1) (2n− 3− k)

ways.

iv) There were exactly k+ 2 couples sitting together previous to the nth couple’s arrival; P1

sits between one of the (k + 2) couples and P2 sits between one of the remaining (k + 1)

couples, giving

(k + 2) (k + 1)

ways.

Summarizing, for n > 2 and 0 ≤ k ≤ n,

Ck,n = 2(2n− k − 1))Ck−1,n−1 + ((2n− k − 2) (2n− k − 3) + 2k)Ck,n−1

+2(k + 1)(2n− k − 3)Ck+1,n−1 + (k + 2)(k + 1)Ck+2,n−1.

See Listing S-3.2 for a program to compute this.
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function couplesaroundatable(m)

M=zeros(m+1,m+3); % Keep the pmf in the matrix M.

M(1,2)=1; M(2,1)=2; M(2,3)=4;

for n=3:m

for k=0:n

if k==0, a=0; % a, b, c and d are the values of the four

else % predecessors in the recursive formula

a=M(n-1,k);

end;

b=M(n-1,k+1); c=M(n-1,k+2); d=M(n-1,k+3);

M(n,k+1)=2*(2*n-k-1)*a+((2*(n-1)-k)*(2*(n-1)-k-1)+2*k)*b ...

+2*(k+1)*(2*(n-1)-k-1)*c+(k+2)*(k+1)*d;

end;

end; for n=1:m

M(n,:)=M(n,:)./gamma(2*n); % make it a density!

end;

M(m+1,:)=1./gamma((0:m+2)+1).*exp(-1);

% put the Poisson mass function in the last row

M(m:m+1,:) % show what you have done

E=zeros(m+1,2); % initialize matrix for the mean values

E(:,1)=M*(0:m+2)’; % calculate the mean values

E(:,2)=(2*(1:(m+1))’)./(2*(1:(m+1))’-1);

E(m+1,2)=1 % correct the mean value of the Poisson pmf

Program Listing S-3.2: Calculate the probability in the couples-around-a-table problem via recursive use of Ck,n. It

also computes the expected value (see Chapter 4) directly and compares to closed–form solution

d) Event Lk can be written as the sum of n− k + 1 disjoint events,

Pr (Lk) =

n∑
i=k

Pr (Fi) ,

where Fk = Ek and Fk+j , j = 1, . . . , n − k, is the event that Ek occurs and exactly j of

Ck+1, . . . Cn occur. There are
(
n−k
j

)
ways of picking j of the Ck+1, . . . Cn and each of these

possibilities for Fk+j is equally likely, and so is equal to Pr (Ek+j). Thus,

Pr (Lk) =
n∑

i=k

Pr (Fi) =
n∑

i=k

(
n− k

i− k

)
Pr (Ei) ,

which is (3.24). This is easily expressed as (3.25), which can be recursively solved for Pr (Ek)

by using the starting condition

Pr (En) = Pr (Ln) ,

with Pr (Ln) available from (3.3) with i = n, i.e.,

Pr (Ln) = Pr (C1 · · ·Ci) = 2n
(n− 1)!

(2n− 1)!
.

Finally, as there are
(
n
k

)
possibilities of choosing k specific couples out of n,

Pr(K = k) =

(
n

k

)
Pr(Ek).

e) Because they are disjoint,

Pr(Lk) = Pr(Ek) + P (Lk ∩ (Ck+1 ∪ . . . ∪ Cn)) ,
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so that, from Poincaré’s theorem,

Pr(Ek) = Pr (Lk)− P ((Lk ∩ Ck+1) ∪ · · · ∪ (Lk ∩ Cn))

= Pr (Lk)− (n− k) Pr (Lk ∩ Ck+1) +

(
n− k

2

)
Pr (Lk ∩ Ck+1 ∩ Ck+2)− · · ·

=
n∑

i=k

(−1)i−k

(
n− k

n− i

)
Pr (Li)

=
n∑

i=k

(−1)i−k

(
n− k

n− i

)
2i
(2n− i− 1)!

(2n− 1)!
.

using (3.3). As there are
(
n
k

)
ways of picking k couples,

Pr (K = k) =

(
n

k

) n∑
i=k

(−1)i−k

(
n− k

n− i

)
2i
(2n− i− 1)!

(2n− 1)!
.

This agrees with (3.4) because
(
i
k

)(
n
i

)
=
(
n−k
n−i

)(
n
k

)
.

f) We have to show

Pr (Ek) =
n∑

j=k

(−1)j+k

(
n− k

n− j

)
2j(2n− j − 1)!

(2n− 1)!

=:
n∑

j=k

(−1)j+k

(
n− k

n− j

)
Nj , (S-3.2)

which, for k = n, clearly holds, as the formula simplifies directly to (3.3) with i = n. Now

assume it holds for Ek+1, Ek+2, . . . , En. Using (3.25), i.e.,

Pr (Ek) = Pr (Lk)−
n∑

i=k+1

(
n− k

i− k

)
Pr (Ei) ,

we have, using(
n− k

i− k

)(
n− i

n− j

)
=

(n− k)!

(i− k)! (n− i)!

(n− i)!

(n− j)! (j − i)!

=
(n− k)!

(n− j)! (j − k)!

(j − k)!

(i− k)! (j − i)!
=

(
n− k

n− j

)(
j − k

i− k

)
and (S-3.2) for Pr (Ei), i = k + 1, . . . , n,

−
n∑

i=k+1

(
n− k

i− k

)
Pr(Ei)

= −
n∑

i=k+1

(
n− k

i− k

) n∑
j=i

(−1)j+i

(
n− i

n− j

)
Nj

= −
n∑

j=k+1

j∑
i=k+1

(−1)j+i

(
n− k

i− k

)(
n− i

n− j

)
Nj

= −
n∑

j=k+1

(−1)j+kNj

j∑
i=k+1

(−1)i−k

(
n− k

n− j

)(
j − k

i− k

)
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so that, with m = i− k and using the binomial theorem,

= −
n∑

j=k+1

(−1)j+k

(
n− k

n− j

)
Nj

j−k∑
m=1

(−1)m
(
j − k

m

)

= −
n∑

j=k+1

(−1)j+k

(
n− k

n− j

)
Nj

(
(−1 + 1)

j−k − 1
)

=

n∑
j=k+1

(−1)j+k

(
n− k

n− j

)
Nj

and, finally, with

Pr (Lk) = Nk =
2k(2n− k − 1)!

(2n− 1)!
,

Pr (Lk)−
n∑

i=k+1

(
n− k

i− k

)
Pr (Ei) =

n∑
j=k

(−1)j+k

(
n− k

n− j

)
Nj = Pr (Ek) .

Solution to Problem 3.6:

a) Simulation involves randomly permuting a 2n–length vector with n zeros and n ones, and

then checking if element i equals elements i − 1 and i + 1, being careful about the two cases

arising from the circularity. This is shown in Listing S-3.3. The program was run with 500,000

replications, for three different values of n. A plot of the probabilities for n = 4 and n = 10

are shown in Figure S-3.2, while the solid line in Figure S-3.3 corresponds to n = 50.

From the latter plot, it appears that the probabilities Pr(S = s) take the shape of the “bell

curve”. A bit more precisely, (using words and concepts from Chapter 4) the pmf of S ap-

proaches a normal pdf. The sample mean and variance are µ = 24.24 and σ2 = 30.66,

respectively, and a normal pdf with these values is overlaid in Figure S-3.3 as the dashed line.

The vertical line is at the mean of 24.24. Clearly, the normal approximation is very good for

n this large.

function g=surrounded(n)

sim=500000; trapped=zeros(sim,1); v=[zeros(1,n) ones(1,n)];

for s=1:sim

if mod(s,1000)==0, [n,s], end

tab=v(randperm(2*n)); mcnt=0;

if (tab(end)==tab(1)) & (tab(1)==tab(2)), mcnt=mcnt+1; end

if (tab(end-1)==tab(end)) & (tab(end)==tab(1)), mcnt=mcnt+1; end

for i=2:(2*n-1)

if (tab(i-1)==tab(i)) & (tab(i)==tab(i+1)), mcnt=mcnt+1; end

end

trapped(s)=mcnt;

end

g=tabulate(trapped+1);

% plot(g(:,1),g(:,3)/100)

% mean(trapped), std(trapped)

Program Listing S-3.3: Simulates probability of getting “trapped” between two people of the same sex when sitting at

a round table with n couples.

b) Program (S-3.4) computes both the exact values of (3.27) and simulated ones. Running the

code

[f,fsim]=holst(5,50000);

plot(0:5,f,’r-’,0:length(fsim)-1,fsim,’g--’)
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Figure S-3.2: Simulated probability of getting “trapped” between two people of the same sex when sitting at a round

table with n couples, based on 500,000 replications. Solid is for n = 4, and dashed is for n = 10.
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Figure S-3.3: Same as in Figure S-3.2 but for n = 50 (solid) and the normal pdf with mean and variance chosen to the

be the sample mean and sample variance, respectively, from the 500,000 replications.

and

[f,fsim]=holst(50,50000);

plot(0:50,f,’r-’,0:length(fsim)-1,fsim,’g--’), axis([0 8 0 0.3])

produces graphs showing the exact and simulated (with 50, 000 replications) probabilities for

n = 5 and n = 50 which are virtually indistinguishable and are not shown.

Figure S-3.4 shows both (3.4) and (3.27) for n = 5 and n = 50. In both cases, the “density” of

(3.27) is, approximately speaking, shifted to the right, compared to (3.4). This makes sense:

One might think that, when wives are already placed in every other seat, the chances are

higher for more matches than when all 2n people are randomly dispersed around the table.

But, as the probabilities sum to one, they cannot be larger for each s, i.e., the number of

couples sitting together. Instead, under (3.27), i.e., when wives occupy every other seat, the

probabilities are larger only when s is large. This is because it is even more unlikely that a

large number of couples would be sitting together when all 2n people are randomly placed.

Solution to Problem 3.7:

a) The probability that at least 10 people order beef is

(0.5)
12

{(
12

10

)
+

(
12

11

)
+

(
12

12

)}
=

79

212
,

which, by symmetry, is also the probability that at least 10 people order fish, so that we have
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function [f,fsim]=holst(n,sim)

f=zeros(n+1,1);

for w=0:n

r=w:n;

temp = (-1).^(r-w) .* c(r,w) ./ gamma(r+1) .* (2*n) ./ (2*n-r);

f(w+1)= sum( temp .* c(2*n-r,r) ./ c(n,r) );

end

if nargin<2, sim=0; end

if sim>0

numpair=zeros(sim,1); tab=zeros(2*n,1);

for i=1:2:(2*n-1), tab(i)=(i-1)/2+1; end

for s=1:sim

men=randperm(n);

for i=2:2:2*n, tab(i)=men(i/2); end

mcnt = (tab(1)==tab(end));

for i=1:(2*n-1)

if tab(i)==tab(i+1), mcnt=mcnt+1; end

end

numpair(s)=mcnt;

end

tt=tabulate(numpair+1);

fsim=tt(:,3)/100;

end

Program Listing S-3.4: Computes (3.27) if sim= 0 and simulates it otherwise

b) 2 · 79 · 2−12 ≈ 3.8574× 10−2.

c) The probability that at least 10 people order beef should be rather small, although it is still

possible. The probability that at least 10 people order fish is the same as the probability that

either 0,1 or 2 people order beef. We have

12∑
i=10

(
12

i

)
0.1i0.912−i +

2∑
i=0

(
12

i

)
0.1i0.912−i ≈ 5.455× 10−9 + 0.88913.

Solution to Problem 3.8: Although this appears to be the same as the question in Problem 2.19
(“Your new neighbors have 2 children, and at least one is a boy. What is the probability that the
other is also a boy?”), the answer is 1/2. To see this formally, denoting B for boy, G for girl, event
{BG} stands for “first child boy, second child girl”, etc., and b is the event that a boy is seen in the
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Figure S-3.4: Comparison of (3.4) (solid line) and (3.27) (dashed) for n = 5 (left) and n = 50) (right)
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garden, then, from Bayes’ rule (and implicitly conditional on the knowledge that the neighbor has
exactly 2 children and both are equally likely regardless of sex to play in the garden), Pr (BB | b)
is given by

Pr (b | BB) Pr (BB)

Pr (b | BB) Pr (BB) + Pr (b | BG) Pr (BG) + Pr (b | GB) Pr (GB) + Pr (b | GG) Pr (GG)

or
1 · (1/4)

1 · (1/4) + (1/2) (1/4) + (1/2) (1/4) + 0 · (1/4)
=

1

2
.

To see intuitively how this differs from Problem 2.19, consider “simulating” to get the answer. With

equal probability 1/4 we get a neighbor with either BB, BG, GB or GG. Next to each “realization”

we place a one to indicate that a boy is playing in the garden, or a zero if not. This occurs with

probability zero for GG, probability 1/2 for GB and BG, and one for BB. The following four

realizations are a representative set of occurrences (because BG gets a one and GB gets a zero,

which reflects the average probability of 1/2 for BG and GB):

BB : 1, GG : 0, BG : 1, GB : 0

Because we condition on observing a boy in the garden, our sample consists only of those pairs

followed by a 1, i.e., BB, BG. Thus, from our restricted sample, the probability of having 2 boys

is 1/2.

Solution to Problem 3.9:

a) Pr (S1S2) = Pr (S2 | S1) Pr (S1) =
s+ c

s+ c+ r

s

s+ r
.

b) Directly, Pr (S2 | R1) =
s

s+ c+ r
and, from Bayes’ rule,

Pr (S1 | R2) =
Pr (R2 | S1) Pr (S1)

Pr (R2 | S1) Pr (S1) + Pr (R2 | R1) Pr (R1)

=

r

s+ c+ r
· s

s+ r
r

s+ c+ r
· s

s+ r
+

r + c

s+ c+ r
· r

s+ r

=
s

s+ c+ r

so that Pr (S2 | R1) = Pr (S1 | R2).

c) For the former,

Pr (S3 | R1) = Pr (S3 | R1, R2) Pr (R2 | R1) + Pr (S3 | R1, S2) Pr (S2 | R1)

=
s

s+ r + 2c

r + c

s+ r + c
+

s+ c

r + s+ 2c

s

r + s+ c
=

s

s+ c+ r
.

For the latter,

Pr (S1 | R3) =
Pr (R3 | S1) Pr (S1)

Pr (R3 | S1) Pr (S1) + Pr (R3 | R1) Pr (R1)
,

but

Pr (R3 | S1) = Pr (R3 | S1, S2) Pr (S2 | S1) + Pr (R3 | S1, R2) Pr (R2 | S1)

=
r

r + s+ 2c

s+ c

s+ c+ r
+

r + c

r + s+ 2c

r

s+ r + c
=

r

s+ c+ r

and Pr (R3 | R1) = 1− Pr (S3 | R1) =
r + c

s+ c+ r
so that

Pr (S1 | R3) =

r

s+ c+ r

s

s+ r
r

s+ c+ r

s

s+ r
+

r + c

s+ c+ r

r

s+ r

=
s

s+ c+ r
,

showing that Pr (S3 | R1) = Pr (S1 | R3).
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Solution to Problem 3.10: For 1 ≤ n ≤ 13, given that the n − 1 cards 2 through n are hearts, there

is a (13− (n− 1))/(52− (n− 1)) chance that any other card (card 1 in particular) will be a heart,

i.e.,

Pn =

{
14−n
53−n , 1 ≤ n ≤ 13,

0, otherwise.

More formally,

Pn =
13
52 · · ·

13−n+1
52−n+1

13
52 · · ·

13−n+1
52−n+1 + 39

52

(
13
51 · · ·

13−n+2
51−n+2

) ,
but the denominators of all fractions are the same, so that

Pn =

13!
(13−n)!

13!
(13−n)! + 39

(
13!

(13−n)!(13−n+1)

) =
1

1 + 39
13−n+1

=
14− n

53− n
.

Solution to Problem 3.11: Define Bi to be the event the object is in box i, i = 1, 2, 3 and F is the

event that the first search of box 3 fails. Then Bayes’ rule gives

Pr (Bi | F ) =
Pr (F | Bi) Pr (Bi)∑3
i=1 Pr (F | Bi) Pr (Bi)

,

with Pr (F | B1) = 1, Pr (F | B2) = 1 and Pr (F | B3) = 0.3. Pr (B2 | F ) = 0.462 is the highest of

the 3 and is, thus, the answer.

Notice that the denominator is Pr (F ) = 0.2 + 0.3 + (0.3) (0.5), while the numerator is one of

these three components for each i. The denominator is just a “correction factor” such that the

probabilities add to one. As such, it makes sense just to compare values 0.2, 0.3 and (0.3) (0.5) =

0.15, showing that box 2 should be searched. Thus, the proposed “naive solution” was correct. If

one wants the conditional probabilities, then these values have to be divided by Pr (F ) = 0.65 to

give respective box probabilities 0.308, 0.462 and 0.231.

Solution to Problem 3.12: This is (3.18) with n = 4, m = 4 and p = 0.6, so that

Pr (A wins) =
7∑

k=4

(
7

k

)
0.6k0.47−k = 0.710208.

Solution to Problem 3.13: Substituting into (3.20),

Pr (A1,m) = pPr (A0,m) + (1− p) Pr (A1,m−1)

= p+ (1− p) [pPr (A0,m−1) + (1− p) Pr (A1,m−2)]

= p+ p (1− p) + (1− p)
2
Pr (A1,m−2)

= p+ p (1− p) + (1− p)
2
[pPr (A0,m−2) + (1− p) Pr (A1,m−3)]

= p+ p (1− p) + p (1− p)
2
+ (1− p)

3
Pr (A1,m−3)

...

= p+ p (1− p) + p (1− p)
2
+ · · ·+ p (1− p)

m−1

= p
1− (1− p)

m

1− (1− p)
= 1− (1− p)

m
.

This agrees with (3.16), i.e., with n = 1,

Pr (A1,m) =

m−1∑
i=0

(
1 + i− 1

i

)
p1 (1− p)

i
= p

m−1∑
i=0

(1− p)
i
= 1− (1− p)

m
.
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Solution to Problem 3.14:

a) See Program S-3.5 and note the use of recursive function calls.

b) Use of (3.16) is slightly more advantageous because pn can be factored out. See Program S-3.6,

which makes judicious use of the vector ability of Matlab.

c)

i) See Program S-3.7, which also demonstrates use of the while construction.

ii) See Program S-3.8. Note the use of the nargin function, as well as the mesh 3D graphics

function. The graph from calling plotgmin(0.65:0.01:0.9) is shown in Figure S-3.5.
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s

Minimum Number of Games to Win such that Pr(A) >= 0.9

Figure S-3.5: Output from plotgmin(0.65:0.01:0.9)

Solution to Problem 3.15: With Pn := Pr (An,n) and r := p (1− p), (3.16) and (1.4) give

1

p
Pn+1 =

n∑
i=0

(
n+ i

i

)
pn (1− p)

i

=
n−1∑
i=0

(
n+ i− 1

i

)
pn (1− p)

i
+

(
2n− 1

n

)
rn +

n∑
i=1

(
n+ i− 1

i− 1

)
pn (1− p)

i

= Pn +
1

2

(
2n

n

)
rn +

n−1∑
i=0

(
n+ i

i

)
pn (1− p)

i+1

= Pn +
1

2

(
2n

n

)
rn +

1− p

p
Pn+1 − (1− p)

(
2n

n

)
rn

= Pn +
1− p

p
Pn+1 +

{
1

2
− (1− p)

}(
2n

n

)
rn.

This yields the recursive formula{
1

p
− 1− p

p

}
Pn+1 = Pn+1 = Pn +

(
p− 1

2

)(
2n

n

)
rn

with P1 = p; solving gives (3.28).

Solution to Problem 3.16: Clearly, T has be to be greater than both n and m, before which nei-

ther A nor B can win. Once T = t ≥ n, then A can win, and this occurs with probability(
t−1
n−1

)
pn (1− p)

t−n
. Likewise, once t ≥ m, B can win. If t is greater than both n and m, then either

A or B could win, thus contributing to the probability that T = t. Putting this together,

To compute Pr (T | An,m), use Bayes’ rule (3.12) to get

Pr (T = t | An,m) =

(
t−1
n−1

)
pn (1− p)

t−n I{n,n+1,...} (t)

Pr (An,m)
.
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function P=fermat(n,m,p)

if n==0

P=1;

elseif m==0

P=0;

else

P=p * fermat(n-1,m,p) + (1-p) * fermat(n,m-1,p);

end

Program Listing S-3.5: Fermat’s solution to the problem of the points

function P = PoP(n,m,p)

i=0:(m-1); P=p^n * sum( c(n+i-1,i) .* (1-p).^i );

Program Listing S-3.6: Closed form solution to the problem of the points

function g=gmin(a,p)

g=0; done=0;

while not(done)

g=g+1;

done=(PoP(g,g,p) >= a);

end

Program Listing S-3.7: Smallest g such that Pr(A | g, g, p) ≥ α

function plotgmin(pvec,avec)

if nargin < 2, avec=0.90; end

plen=length(pvec); alen=length(avec); g=zeros(alen,plen);

for aloop=1:alen

a=avec(aloop);

for ploop=1:plen

p=pvec(ploop); g(aloop,ploop)=gmin(a,p);

end

end

if alen==1

plot(pvec,g,’o’,pvec,g,’r-’)

xlabel (’Probability p that A wins’), ylabel(’Games’)

title ([’Min # of Games to Win such that Pr(A) >= ’ num2str(avec)])

else

mesh(pvec,avec,g)

title (’Min # of Games to Win such that Pr(A) > \alpha’)

xlabel (’Probability p that A wins’)

ylabel (’Tolerance \alpha’), view(-25,15)

end

Program Listing S-3.8: Plot g for various p (pvec) and α (avec)
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Figure S-3.6: Posterior Pr (T = t | A10,10) versus t for p = 0.3 (solid) 0.5 (dashed) and 0.7 (dotted)
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Figure S-3.7: Posterior Pr (An,18 | T = t) versus t for p = 0.4 and n = 13 (solid) 15 (dashed) and 17 (dotted)

Likewise, the conditional probability that A wins, given that T = t rounds were played, is

Pr (An,m | T = t) =

(
t−1
n−1

)
pn (1− p)

t−n I{n,n+1,...} (t)

Pr (T = t)
.

Clearly, if p = 0.5, then Pr (An,n | T = t) = 0.5 for all n ≤ T ≤ 2n− 1.

Figure S-3.6 plots Pr (T = t | A10,10) versus t for p = 0.3, 0.5 and 0.7; while Figure S-3.7 plots

Pr (An,18 | T = t) versus t for p = 0.4 and n = 13, 15 and 17.

Solution to Problem 3.17: To show that the sum in (3.29) is absolutely convergent for p < 1/2, let

an =
(
2n
n

)
[p (1− p)]

n
so that, by l’Hôpital’s rule,

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

[
(2n+ 2) (2n+ 1)

(n+ 1)
2

]
p (1− p) = 4p (1− p) < 1,

because p (1− p) < 1
4 for p < 1

2 . The latter follows directly from
(
p− 1

2

)2
> 0 for p ̸= 1

2 .

From (3.28), 0 = p+
(
p− 1

2

)
S, which implies

S =
2p

1− 2p
= 2p

∞∑
i=0

2ipi =

∞∑
i=1

2ipi,

or (3.30), i.e.,
∞∑
i=1

(
2i

i

)
[p (1− p)]

i
=

∞∑
i=1

2ipi.
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Using the binomial theorem, the lhs may also be written as

∞∑
i=1

(
2i

i

)[
p− p2

]i
=

∞∑
i=1

(
2i

i

) i∑
j=0

(
i

j

)
(−1)j p2jpi−j =

∞∑
i=1

i∑
j=0

(
2i

i

)(
i

j

)
(−1)j pi+j .

Clearly, y := i+ j goes from 1 to ∞; collecting those terms yields

∞∑
i=1

i∑
j=0

(
2i

i

)(
i

j

)
(−1)j pi+j =

∞∑
y=1

y∑
i=1

(
2i

i

)(
i

y − i

)
(−1)y−i

py.

Comparing to the rhs of (3.30), this gives the identity (3.31), i.e.,

2y =

y∑
i=1

(
2i

i

)(
i

y − i

)
(−1)i+y

=

y∑
i=⌈y/2⌉

(
2i

y

)(
y

i

)
(−1)i+y

,

where ⌈x⌉ = ceil (x) and the latter term follows from
(
2i
i

)(
i

y−i

)
=
(
2i
y

)(
y
i

)
and the fact that i ≥

y − i⇒ i ≥ y/2.

Solution to Problem 3.18: We have, with (1− 2p)
2
= 1− 4p (1− p) and m = n− 1,

g′ (p) (1− 2p) =
∞∑

n=0

(
2n

n

)
n [p (1− p)]

n−1
(1− 2p)

2

=

∞∑
n=0

(
2n

n

)
n [p (1− p)]

n−1 −
∞∑

n=0

n

(
2n

n

)
[p (1− p)]

n−1
4p (1− p)

=

∞∑
n=1

(
2n

n

)
n [p (1− p)]

n−1 −
∞∑

n=0

4n

(
2n

n

)
[p (1− p)]

n

=
∞∑

m=0

(
2m+ 2

m+ 1

)
(m+ 1) [p (1− p)]

m −
∞∑

m=0

4m

(
2m

m

)
[p (1− p)]

m

=
∞∑

m=0

{
(2m+ 2) (2m+ 1)

m+ 1
− 4m

}(
2m

m

)
[p (1− p)]

m

= 2
∞∑

m=0

(
2m

m

)
[p (1− p)]

m
= 2g (p) ,

so that g′ (p) (1− 2p) = 2g (p) and the result follows.

Solution to Problem 3.19:

a) Note that, if A wins the first round played, then (because of independence of trials) the game

can be viewed as “starting over” but such that now A has i + 1 dollars and B has T − i − 1

dollars. Thus, Pri (A |W ) = Pri+1 (A) = si+1. Using the law of total probability (3.10), it

follows that

si = Pri (A) = Pri (A |W ) Pr (W ) + Pri
(
A | W̄

)
Pr
(
W̄
)

= si+1 p+ si−1 q,

i.e.,

si = psi+1 + qsi−1, 1 ≤ i ≤ T,

or, as si = psi + qsi,

qsi − qsi−1 = psi+1 − psi.

With r = q/p and di = si+1 − si, this yields di = rdi−1 or di = rid0.
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Conditioning on i = 0, we see that s0 = 1. Similarly, sT = 0. Then

1 = s0 − sT = −
T−1∑
i=0

di = −d0
T−1∑
i=0

ri = −d0
1− rT

1− r

so that

d0 = − 1− r

1− rT
.

Similarly,

sj = sj − 0 = sj − sT = −d0
T−1∑
i=j

ri = −d0
rj − rT

1− r
,

so that

sj = (−1) 1− r

1− rT
(−1)r

j − rT

1− r
=

rj − rT

1− rT
, 0 ≤ j ≤ T.

b) We have

lim
p→ 1

2

1−
(

1−p
p

)i
1−

(
1−p
p

)T
is indeterminant, l’Hôpital’s rule implies

lim
p→ 1

2

d
dp

(
1−

(
1−p
p

)i)
d
dp

(
1−

(
1−p
p

)T) = lim
p→ 1

2

i
p(1−p)

(
1
p (1− p)

)i
T

p(1−p)

(
1
p (1− p)

)T =
4i

4T
=

i

T
.

Solution to Problem 3.20: See Program S-3.9 and output shown in Figure S-3.8.

function disease

subplot(2,1,1), a=0:80; plot(a,postd(a,10)), xlabel(’age’)

title (’Pr(D|+) For c=10 Cigarettes’)

subplot(2,1,2), c=0:40; plot(c,postd(45,c))

xlabel(’Cigarettes per Day’), title (’Pr(D|+) For age=45 Years’)

orient tall

function p=postd(a,c)

b=a/20-3; d=(c+1)*(tanh(b)+1)/100; p=0.95*d ./ (0.95*d + 0.02*(1-d));

Program Listing S-3.9: Pr (D | +) for 0 ≤ a ≤ 80, c = 10 and Pr (D | +) for a = 45, 0 ≤ c ≤ 40

Solution to Problem 3.21: The function fn is given by c1λ
n
1 + c2λ

n
2 , where λ1,2 are the solutions of

the characteristic equation λ2 − (1− p)λ− p (1− p) = 0, i.e.,

2λ1,2 = 1− p±
√
(1 + 2p− 3p2).

Using the starting values f1 and f2, the solution to the two equations

c1λ1 + c2λ2 = 0, c1λ
2
1 + c2λ

2
2 = p2

gives the values of coefficients c1 and c2, i.e., with w =
√
(1 + 2p− 3p2),

c1 =
p2

λ1 (λ1 − λ2)
=

−2p2

(p− w − 1)w
, c2 =

p2

λ2 (λ2 − λ1)
=

2p2

(p+ w − 1)w
.
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Figure S-3.8: Output from disease

That is,

fn = c1λ
n
1 + c2λ

n
2

= 2p2w−1

(
λn
2

p+ w − 1
− λn

1

p− w − 1

)
= 2p2w−1

(
(1− p− w)

n
2−n

p+ w − 1
− (1− p+ w)

n
2−n

p− w − 1

)
= 21−np2w−1

(
(1− p+ w)

n−1 − (1− p− w)
n−1
)
.

For low values of n, this can be simplified; several are shown in the following table.

n fn

1 0

2 p2

3 p2 (1− p)

4 p2 (1− p)

5 p2 (p+ 1) (1− p)
2

.

To verify that
∑∞

i=1 fn = 1,

∞∑
i=1

fi = p2w−1
∞∑
i=1

21−i
(
(1− p+ w)

i−1 − (1− p− w)
i−1
)

= p2w−1
∞∑
i=2

(
1− p+ w

2

)i−1

− p2w−1
∞∑
i=2

(
1− p− w

2

)i−1

= p2w−1

(
1− p+ w

1 + p− w

)
− p2w−1

(
1− p− w

1 + p+ w

)
= 1,
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after some simplification using Maple. For the expected value, using Maple gives

∞∑
i=1

ifi = p2w−1
∞∑
i=2

i

(
1− p+ w

2

)i−1

− p2w−1
∞∑
i=2

i

(
1− p− w

2

)i−1

= p2w−1

(
(1− p+ w) (3 + p− w)

(1 + p− w)
2

)
− p2w−1

(
(3 + p+ w) (1− p− w)

(1 + p+ w)
2

)

=
p+ 1

p2
,

as was to be shown.

48



Solutions to Chapter 4:

Univariate Random Variables

Solution to Problem 4.1: Pr (X > 1) = 1− Pr (X = 1) = 0.7 and

Pr (X = 2 | X > 1) =
Pr (X = 2 ∩ X > 1)

Pr (X > 1)
=

Pr (X = 2 )

Pr (X > 1)
⇒ Pr (X = 2 ) = 0.56,

so that

Pr (X > 2) = 1− Pr (X = 1)− Pr (X = 2) = 1− 0.3− 0.56 = 0.14.

Solution to Problem 4.2:

Pr (X = 0) + Pr (X = 1) =
1

2
⇒ p+ pq =

1

2
⇒ p2 − 2p+

1

2
= 0⇒ p =

2−
√
2

2
.

Because X ∼ Geo (p), it follows that

E [X] =
1− p

p
=

1√
2− 1

≈ 2.4142.

Solution to Problem 4.3: For density (4.16) with q = 1− p,

E [X] =
∞∑
x=0

xfX (x) = p
∞∑
x=0

xqx =: pS1,

where

S1 = q + 2q2 + 3q3 + · · ·
qS1 = q2 + 2q3 + 3q4 + · · ·

S1 − qS1 = q + q2 + q3 + · · · = q

1− q

so that

S1 =
q

(1− q)
2 , E [X] = pS1 =

1− p

p
.

For E
[
X2
]
using density (4.18),

E
[
X2
]
=

∞∑
x=1

x2fX (x) = p
∞∑
x=1

x2qx−1 = p
∞∑
x=1

x2qx−1 =: pS2,

where

S2 = 1 + 4q + 9q2 + 16q3 + · · ·+ x2qx−1 + · · ·
qS2 = q + 4q2 + 9q3 + · · ·+ (x− 1)

2
qx + · · ·

S2 − qS2 = 1 + 3q + 5q2 + 7q3 + · · ·+ (2x− 1) qx−1 + · · ·

=

∞∑
i=0

(2i+ 1) qi = 2S1 +

∞∑
i=0

qi = 2
q

(1− q)
2 +

1

1− q
,
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so that

S2 = 2
q

(1− q)
3 +

1

(1− q)
2 =

1 + q

(1− q)
3 , E

[
X2
]
=

2− p

p2

and

V (X) =
2− p

p2
−
(
1

p

)2

=
1− p

p2
,

which holds for both density (4.16) and (4.18) because V (X − 1) = V (X).

Solution to Problem 4.4: From the definition of expected value and the binomial theorem,

E [X] =
n∑

x=0

x fX(x) =
n∑

x=0

x

(
n

x

)
px(1− p)n−x =

n∑
x=1

xn!

(n− x)!x!
px(1− p)n−x

= np

n∑
x=1

(n− 1)!

(n− x)! (x− 1)!
px−1(1− p)n−x = np

n−1∑
k=0

(
n− 1

k

)
pk(1− p)n−1−k

= np [p+ (1− p)]
n−1

= np,

where k = i− 1.

Solution to Problem 4.5: Let Y = σX. Then, with µ = E [X], E [Y ] = σµ and

µ4(Y )

µ2
2(Y )

=
E
[
(Y − E [Y ])

4](
E
[
(Y − E [Y ])

2])2 =
E
[
(σX − σµ)

4](
E
[
(σX − σµ)

2])2 =
σ4E

[
(X − µ)

4]
σ4
(
E
[
(X − µ)

2])2 =
µ4(X)

µ2
2(X)

.

Solution to Problem 4.6:

a) On the first toss, the probability of no sixes is (5/6)d, so that

p = 1− (5/6)d

is the probability of at least one six. The number of tosses (of all d dice) until at least one six

occurs is clearly geometrically distributed, so the expected number of rolls until at least one

six occurs is 1/p or
1

p
=

1

1− (5/6)d
=

6d

6d − 5d
.

On the toss which produced at least one six, the probability of getting exactly one six is

Pr (one six | at least one six) =
Pr (one six)

p
=

1

p

(
d

1

)
1

6

(
5

6

)d−1

= d
5d−1

6d − 5d
.

Similarly, on the toss which produced at least one six, the probability of getting exactly k sixes

is
1

p

(
d

k

)(
1

6

)k (
5

6

)d−k

=

(
d

k

)
5d−k

6d − 5d
.

The critical step is now: If, say, T initial tosses were required to produce at least one six, and

k sixes occurred on that trial, then the expected total number of tosses is T +E d−k[N ]. That

is, if k is fixed, we expect
1

p
+ E d−k[N ]

tosses. Taking the fact that k is random into account and that events {k = 1} , . . . , {k = d}
are disjoint gives (with j = d− k and reversing the order of summation),

E d[N ] =
1

p
+

d∑
k=1

(
d

k

)
5d−k

6d − 5d
E d−k[N ]

=
6d

6d − 5d
+

d−1∑
j=0

(
d

j

)
5j

6d − 5d
E j [N ]

=
1

6d − 5d

(
6d +

d−1∑
j=0

(
d

j

)
5jE j [N ]

)
.
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The result follows because E 0[N ] = 0.

b) The following Matlab function can be used to evaluate the mean of N . (It requires evaluation

of the binomial coefficient as given in Listing 1.1).

function e = dsixes(d)

e=zeros(d,1); % reserve memory for faster execution.

e(1)=6;

for m=2:d

s=0;

for k=1:m, s=s + 5^k * c(m,k) * e(k); end

e(m)=(6^m + s) / (6^m - 5^m);

end

c) To do this exercise, familiarity with (among other things) the very basics of regression is

required. The following handful of commands should help get the less initiated on the right

track. (To discover which Matlab function performs regression, type help stats; to learn how

it works, type help regress.)

d=50; % that’s enough for now

e = nsixes(d); % compute expected value for n=1 through n=50

plot(1:d,e) % have a look: it is nonlinear!

% What functions have some resemblance? log(n), 1/n and sqrt(n)

% So try one or more of them as regressors (with a constant).

% Here’s an example for building a regressor matrix:

kon = ones(d,1); v=(1:d)’; X = [kon v 1./v];

[B,BINT,R,RINT,STATS] = REGRESS(e,X); B, STATS(1)

Some trial and error reveals that the regressors 1/d and
√
d (and a constant) work very well,

yielding (for the expectation values for d = 150 through d = 200) a parsimonious model with

an R2 measure of fit of 0.9999998 and coefficients

E d[N ] ≈ 26.4604689 + 0.554971041
√
d− 313.709051d−1.

For d = 394 (which is well outside of the range used for “estimation”), E 394[N ] = 0.36452

exactly, with the approximation yielding 36.68. After d = 394, the previous program fails to

work. For d = 1, 000, the approximation yields 43.70; for n = 10, 000, it gives 81.93.

d) The following Matlab function can be used to simulate the r.v. N S times, based on d dice.

function vec =dsixessim(d,S)

vec=zeros(S,1);

m=d;

for i=1:S

if mod(i,100)==0, i, end % just show the progress

z=0;

while d>0

w=unidrnd(6,d,1);

x =sum(w==6);

d=d-x;

z=z+1;

end

d=m;

vec(i)=z;

end
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e) It is easy to see that Ac ∩ Bc = ∅ so that, from De Morgan’s law, Pr (A ∪B) = 1. Also, Ac

implies B, i.e., Ac ⊂ B, and Bc implies A, i.e., Bc ⊂ A.

The Venn diagram looks something like that in the figure below.

B BC

AC

A

For Pr (A), using the hint, the probability that a single die does not show a 6 after x throws

is clearly (5/6)
x
. The complement (i.e., after x throws, it shows a 6) thus has probability

1− (5/6)
x
. Now, the independence of the dice imply

Pr (A) = (1− (5/6)
x
)
d
.

(It might help to imagine that, at each toss, all the dice are thrown, but you keep track of

which have already displayed a 6 at least once.) Similarly, Pr (B) = 1 −
(
1− (5/6)

x−1
)d

.

Thus, with p = 5/6,

Pr (N = x ; d) = (1− px)
d −

(
1− px−1

)d I{1,2,...} (x) , d ∈ N. (S-4.1)

For x = 1, this reduces to (1/6)
d
, which is clearly correct, while for d = 1,

Pr (N = x ; 1) =

(
5

6

)x−1

−
(
5

6

)x

=
1

6

(
5

6

)x−1

I{1,2,...} (x) ,

which is just the geometric distribution and also correct. Figure S-4.1 compares the derived

mass function to kernel density estimates of simulated values,24 confirming its correctness.

0 10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure S-4.1: Mass functions (S-4.1) (solid lines) and kernel density estimates of the simulated density (dashed lines)

based on 10,000 replications, for d = 10, d = 30 and d = 60, from left to right.

24 Kernel density estimation can be thought of as “connecting the dots” formed by the bars in a histogram, and then
scaling it such that it is a proper density (i.e., that it integrates to one). More detail on this, and a program to compute
it, will be given in §7.4.2.
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f) Using the binomial theorem,

E d [N ] =

∞∑
x=1

x
(
(1− px)

d −
(
1− px−1

)d)

=

∞∑
x=1

x

 d∑
j=0

(
d

j

)(
(−px)j

)
−

d∑
j=0

(
d

j

)(
−px−1

)j
=

∞∑
x=1

x

 d∑
j=0

(
d

j

)
(−1)j

(
pjx
)
−

d∑
j=0

(
d

j

)
(−1)j pj(x−1)


=

∞∑
x=1

x

 d∑
j=0

(
d

j

)
(−1)j pjx

(
1− p−j

)
Noting that the inner product is zero for j = 0, switching the sums, and using the fact that,

for q = pj ,
∞∑
x=1

xqx =
q

(1− q)
2 ,

we have

E d[N ] =
∞∑
x=1

x

0 +
d∑

j=1

(
d

j

)
(−1)j pjx

(
1− p−j

)
=

d∑
j=1

(
d

j

)
(−1)j

(
1− p−j

) ∞∑
x=1

xpjx

=
d∑

j=1

(
d

j

)
(−1)j

(
1− p−j

) pj

(1− pj)
2

=
d∑

j=1

(
d

j

)
(−1)j+1

1− pj
.

Solution to Problem 4.7:

a) The number of trials performed until (and including) a 5 or 7 appears is geometric with

p = Pr ({X = 5}
∪
{X = 7}) = Pr (X = 5) + Pr (X = 7) = 10/36 and, from Problem 4.3,

expected value p−1 = 3.6.

b) Solution 1 Define Ei to be the event that neither X = 5 or X = 7 on the first i − 1 trials,

but X = 5 on the ith trial. As Pr (Ei) =
(
1− 10

36

)i−1 4
36 ,

Pr (E) = Pr

( ∞∪
i=1

Ei

)
=

∞∑
i=1

Pr (Ei) =
1

9

∞∑
i=1

(
13

18

)i−1

=
2

5
.

Solution 2 Consider the first trial. Let F be the event that it results in X = 5, G the event

that X = 7 and H the event that X /∈ {5, 7}, i.e., the first trial results in something other

than 5 or 7. Note that events F , G and H partition the first trial without overlap, i.e., events

F , G and H are exclusive and exhaustive, and that Pr (E | F ) = 1, Pr (E | G) = 0 and, as

trials are independent, Pr (E | H) = Pr (E). It follows that

Pr (E) = Pr (F ) + Pr (E) (1− Pr (F )− Pr (G)) ,

which, upon solving, gives (4.13). Plugging in the values for this problem yields Pr (E) = 2/5.

Solution to Problem 4.8:
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a) Simple calculation shows Pr (S = 7) = 6/36 and Pr (S ≤ 4) = 1/36 + 2/36 + 3/36 = 6/36.

These two events are disjoint, so that Pr (S = 7 ∪ S ≤ 4) = 1/3 and, from the nature of the

trials and stopping procedure, N ∼ Geo (1/3) with density (4.18) and, from Problem 4.3,

E [N ] = 3 and V (N) = 6.

b) Because the two events are equally likely, from (4.13), the answer is 1/2.

Solution to Problem 4.9: From (4.10),

Pr (X = x) =
e−λλx

x!

1

1− e−λ
=

λx

(eλ − 1)x!

and

E [X] =
1

eλ − 1

∞∑
x=1

x
λx

x!
=

λ

eλ − 1

∞∑
x=1

λx−1

(x− 1)!
=

λ

eλ − 1
eλ =

λ

1− e−λ

and, as

E [X(X − 1)] =
1

eλ − 1

∞∑
x=1

x (x− 1)
λx

x!
=

λ2

eλ − 1

∞∑
x=2

λx−2

(x− 2)!
=

λ2

1− e−λ
,

we have

V (X) = E [X(X − 1)] + E [X]− (E [X])
2
=

λ
(
1− λe−λ − e−λ

)
(1− e−λ)

2 .

Solution to Problem 4.10: This is

1 · 3
5
+ 2 · 2

5

3

4
+ 3 · 2

5

1

4
= 1.5.

Solution to Problem 4.11:

a) Denote a defective as D and a nondefective as G. Notice that, for T = 3, the event {GGG}
also identifies the 2 defectives as being the 2 components remaining. Thus,

Pr (T = 2) = Pr (DD) =
2

5

1

4
=

1

10

Pr (T = 3) = Pr (GDD) + Pr (DGD) + Pr (GGG) =
3

5

2

4

1

3
+

2

5

3

4

1

3
+

3

5

2

4

1

3

=
3

10

Pr (T = 4) = 1− Pr (T = 2)− Pr (T = 3) =
6

10
,

and zero otherwise. Also,

E [T ] = 2 · 1
10

+ 3 · 3
10

+ 4 · 6
10

= 3.5.

b) This is similar to the N = 5 case, again noticing that, for T = N − 2, there is the additional

possibility that all N − 2 chosen items are nondefective, so that one knows that the remaining
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2 are the defective ones. We have

Pr (T = 2) = Pr (DD) =
2

N

1

N − 1
=

(
N

2

)−1

Pr (T = 3) = Pr (GDD) + Pr (DGD)

=
N − 2

N

2

N − 1

1

N − 2
+

2

N

N − 2

N − 1

1

N − 2
= 2

(
N

2

)−1

Pr (T = 4) = Pr (GGDD) + Pr (GDGD) + Pr (DGGD) = 3

(
N

2

)−1

...

Pr (T = N − 3) = (N − 4)

(
N

2

)−1

Pr (T = N − 2) = (N − 3)

(
N

2

)−1

+ Pr

GG · · ·G︸ ︷︷ ︸
N−2 times


= (N − 3)

(
N

2

)−1

+

(
N−2
N−2

)(
2
0

)(
N
2

) = (N − 2)

(
N

2

)−1

and

Pr (T = N − 1) = 1−
N−2∑
i=2

Pr (T = i)

= 1−
(
N

2

)−1

(1 + 2 + · · ·+ (N − 4) + (N − 2))

= 1−
(
N

2

)−1(
1 +

(N − 3) (N − 2)

2

)
= 1− 2 + (N − 3) (N − 2)

N (N − 1)
= 4

N − 2

N (N − 1)

= 2 (N − 2)

(
N

2

)−1

so that

fT (t;N) =

(
N

2

)−1


(t− 1) if 2 ≤ t ≤ N − 3

N − 2 if t = N − 2

2 (N − 2) if t = N − 1

0 otherwise.

c) Using the rules of summation discussed in Example 1.18,

E [T ] =

N−3∑
t=2

tfT (t) =

(
N

2

)−1
(

N−3∑
t=2

t (t− 1) + (N − 2)
2
+ 2 (N − 2) (N − 1)

)

=
2 (N − 2) (N + 2)

3 (N − 1)

and

E
[
T 2
]
=

(
N

2

)−1
(

N−3∑
t=2

t2 (t− 1) + (N − 2)
3
+ 2 (N − 2) (N − 1)

2

)

=
3N4 + 2N3 − 27N2 + 10N + 24

6N (N − 1)
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so that

V (T ) = E
[
T 2
]
− (E [T ])

2

=
3N4 + 2N3 − 27N2 + 10N + 24

6N (N − 1)
−
(
2 (N − 2) (N + 2)

3 (N − 1)

)2

=
N5 − 3N4 − 23N3 + 111N2 − 86N − 72

18N (N − 1)
2 .

d) Clearly, E [t] → 2
3N , which is reasonable because, on average, the 2 defectives will partition

the random “row” of components into 3 sections, so that one must sample 2/3 of them to

reach the 2nd defective. See §6.4.3 for a more formal presentation of this argument.

e) Listing S-4.1 shows one way.

f) In order for T = N − 1, it must be the case that a defective and a nondefective are the last

two items remaining whose status is unknown and one of which will be inspected. There are(
N−2
D−1

)(
2
1

)
out of

(
N
D

)
ways which this can occur.

From the plots, it appears as though the probability decays geometrically. WithX = N−T , we
analytically know fX(1) = Pr(X = 1). For fX(x), x ≥ 2, we could take fX(x) ≈ p(1− p)x−2.

For example, with N = 48 and D = N/4 = 12, simulation gives the empirical values 0.30,

0.20, 0.14, 0.10, 0.06 and 0.04 for X = 2 through X = 7. Taking p = 0.30 gives approximate

probabilities of 0.300, 0.210, 0.147, 0.103, 0.072 and 0.050, which are indeed quite close to the

empirical values. (The estimate of p, denoted p̂, can be obtained as 1/X̄, which gave 0.3005

in this case. Estimation in general, and a discussion of this estimator for p, will be discussed

in a later chapter.)

One might guess that the geometric approximation works well for large values of N and values

of D which grow with N , e.g., D = N/4. The ambitious reader could try to verify this by

simulation for a large variety of N and D and attempt to further approximate p̂ as a simple

function of N and D.

Solution to Problem 4.12:

a) Taking Xi = Ni −K, xi = Ni − k, i = 1, 2 and N = N1 +N2 shows that

f (k;N1, N2, p) = Pr (K = k | N1, N2, p)

= Pr (X2 = x ∩ lhpe) + Pr (X1 = x ∩ rhpe)

=

(
N − k

N1

)
pN1+1 (1− p)

N2−k I{0,1,...,N2} (k)

+

(
N − k

N2

)
(1− p)

N2+1
pN1−kI{0,1,...,N1} (k) . (S-4.2)

A Matlab program which accomplishes the desired task is shown in Listing S-4.2. It is “re-

stricted” to having N1 ≥ N2.

b) Listing S-4.3 shows one possible way of programming this.

Solution to Problem 4.13: We have that EN [K] is given by

N∑
j=0

j

(
2N − j

N

)(
1

2

)2N−j

=

N−1∑
k=0

(k + 1)

(
2N − k − 1

N

)(
1

2

)2N−k−1

=

N−1∑
k=0

(k + 1)

(
2N − k − 2

N − 1

)(
1

2

)2N−k−1

+

N−1∑
k=0

(k + 1)

(
2N − k − 2

N

)(
1

2

)2N−k−1

=: G+H.
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function [e,v,tests]=electriciden(n,d,sim);

e=0; esq=0; if nargout>=3, tests=zeros(sim,1); end

for i=1:sim;

a=electricsim(n,d,0);

e=e+a; esq=esq+a.^2;

if nargout>=3, tests(i)=a; end

end;

e=e/sim; esq=esq/sim; v=esq-e.*e;

if d==2 % for this we have an exact solution

true_e = 2*(n-2)*(n+2)/3/(n-1)

true_v = (n^5 - 3*n^4 - 23*n^3 + 111*n^2 -86*n -72) / (18*n*(n-1)^2)

end

function a=electricsim(n,d,zaehler);

a=0;

k=n-d; % k is number of nondefectives

if k>=1; % If at least one nondefective remaining, keep drawing

if d>=1; % If at least one defective remaining, keep drawing

y=unifrnd(0,1);

a=zaehler;

zaehler=zaehler+1;

if y<=(d/n); a=electricsim(n-1,d-1,zaehler); % draw a defective

else, a=electricsim(n-1,d,zaehler); % draw a nondefective

end;

else

if zaehler>a; a=zaehler; end;

end;

else

if zaehler>a; a=zaehler; end;

end;

Program Listing S-4.1: Parameters n and d correspond to N and D, while sim is the desired number of replications to

perform. Observe how the subprogram electricsim uses recursion (it calls itself) and keeps track of the number of required

inspections via variable zaehler (Zähler being German for counter).
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function vec=banach(n1,n2,p,sim)

vec=zeros(sim,1);

for i=1:sim

vec(i)=simul(n1,n2,p); if mod(i,100)==0, i, end

end

tt=tabulate(vec+1); a=tt(:,2); mx=tt(end,1)-1; b=0:mx; a=a./sim;

true=echt(n1,n2,p); plot(b,a,’r-’,0:mx,true(1:mx+1),’go’)

mn=min(vec); ax=axis; axis([mn mx 0 ax(4)]), set(gca,’fontsize’,14)

function echte=echt(n1,n2,p) % true mass function

mx=max(n1,n2); echte=zeros(1,mx); n=n1+n2; d=0:mx;

d1=0:n2; h1=c(n-d1,n1);

k1=p^(n1+1).*(1-p).^(n2-d1); h1=h1.*k1;

d2=0:n1; h2=c(n-d,n2);

k2=(1-p)^(n2+1).*p.^(n1-d2); h2=h2.*k2;

if n1>n2

g=zeros(1,n1-n2); h1=[h1,g];

else

g=zeros(1,n2-n1); h2=[h2,g];

end

echte=h1+h2;

function output=simul(n1,n2,p);

ok=1; zaehlerone=0; zaehlertwo=0;

while ok

y=unifrnd(0,1,1,1);

if y<p % box 1

if n1==0, x=n2; ok=0; end

if n1>0, n1=n1-1; zaehlerone=zaehlerone+1; end

end

if y>p

if n2==0, x=n1; ok=0; end

if n2>0, n2=n2-1; zaehlertwo=zaehlertwo+1; end

end

end

output=x;

Program Listing S-4.2: Plots (S-4.2) overlaid with simulated values
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function minmax=banachmultisim(N,p,sim)

if any(p<=0) | any(p>=1) | sum(p)~=1, error(’bad p’), end

w=max(N); y=zeros(2,sim);

for i=1:sim

[s,d]=banachmulti(N,p);

y(1:2,i)=[s,d]’;

end

tt1=tabulate(y(1,1:sim)+1); tt2=tabulate(y(2,1:sim)+1);

a=tt1(:,2); b=tt2(:,2); mx=tt1(end,1)-1; mi=tt2(end,1)-1;

a=a./sim; b=b./sim;

if length(N)==2

plot(0:mx,a,’r-’), title(’Mass Function of Remaining Matches’)

else

plot(0:mx,a,’r-’,0:mi,b,’b--’)

title(’Marginal Mass Function of Minimum and Maximum Remaining Matches’)

end

minmax=y’;

function [ma,mi]=banachmulti(x,p);

n=length(x); ok=1; mi=min(x);

while ok==1

s=0; zaehler=0; r=unifrnd(0,1,1,1);

for i=1:n, if zaehler==0

s=s+p(i);

if r<s, zaehler=i; end

end, end

x(zaehler)=x(zaehler)-1; mi=min(x); ma=max(x);

if mi<1, ok=0; end

end

help=find(x==0); x(help)=max(x)+1; mi=min(x);

Program Listing S-4.3: Plots the mass function of the min and max of the remaining matches in the “vector” Banach

matchbox problem
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Thus, G is given by

1

2

{
N−1∑
k=0

k

(
2 (N − 1)− k

N − 1

)(
1

2

)2(N−1)−k

+

N−1∑
k=0

(
2 (N − 1)− k

N − 1

)(
1

2

)2(N−1)−k
}

=
1

2
EN−1 [K] +

1

2

and, with j = k + 2, H is

N∑
j=2

(j − 1)

(
2N − j

N

)(
1

2

)2N−j+1

=
1

2

{
N∑

j=2

j

(
2N − j

N

)(
1

2

)2N−j

−
N∑

j=2

(
2N − j

N

)(
1

2

)2N−j
}

=
1

2

{
EN [K]−

(
2N − 1

N

)(
1

2

)2N−1
}

− 1

2

{
1−

(
2N

N

)(
1

2

)2N

−

(
2N − 1

N

)(
1

2

)2N−1
}

=
1

2
EN [K]− 1

2
+

(
2N

N

)(
1

2

)2N+1

.

Simplifying G+H yields the recursion

EN [K] = EN−1 [K] +

(
2N

N

)(
1

2

)2N

, E1 [K] =
1

2
.

Solving and using (1.10), (1.9) and (1.6) to simplify yields

EN [K] =
N∑
i=1

(
2i

i

)(
1

2

)2i

=
N∑
i=1

(−1)i
(
− 1

2

i

)
=

N∑
i=1

(
i− 1/2

i

)
=

(
N + 1/2

N

)
− 1.

Finally, using the approximation to
(
N+1/2

N

)
in (A.95) yields

EN [K] ≈ −1 + 2N + 1√
Nπ

≈ −1 + 2
√

N /π.

Solution to Problem 4.14: If this holds for n, then, for n+ 1,

E [M | n+ 1] =
n∑

m=1

mcm,n+1 +
n+1∑

m=n+1

mcm,n+1

=
n∑

m=1

1

(m− 1)!

n+1−m∑
i=0

(−1)i

i!
+

1

n!

= E [M | n] +
n∑

m=1

1

(m− 1)!

(−1)n+1−m

(n+ 1−m)!
+

1

n!
,

so that we must show that

n∑
m=1

1

(m− 1)!

(−1)n+1−m

(n+ 1−m)!
= − 1

n!
, or 1 =

n∑
m=1

n!

(m− 1)!

(−1)n−m

(n+ 1−m)!
.

But, with j = m− 1 and repeated use of (1.4),

n∑
m=1

n!

(m− 1)!

(−1)n−m

(n+ 1−m)!
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is equal to

n∑
m=1

(
n

m− 1

)
(−1)n−m

=
n−1∑
j=0

(
n

j

)
(−1)n−j−1

=
n−1∑
j=0

(
n− 1

j

)
(−1)n−j−1

+
n−1∑
j=1

(
n− 1

j − 1

)
(−1)n−j−1

= (1− 1)
n−1

+

n−1∑
j=1

(
n− 2

j − 1

)
(−1)n−j−1

+

n−1∑
j=2

(
n− 2

j − 2

)
(−1)n−j−1

= (1− 1)
n−1

+ (1− 1)
n−1

+ · · ·

=
...

=
n−1∑

j=n−1

(
n− (n− 1)

j − (n− 1)

)
(−1)n−j−1

= (−1)n−(n−1)−1
= (−1)0 = 1.

Solution to Problem 4.15: With p = 1− λ/r,

fX (x; r, p) =

(
r + x− 1

x

)
pr (1− p)

x I{0,1,...} (x)

=
(r + x− 1)!

(r − 1)! rx︸ ︷︷ ︸
→1

(
1− λ

r

)r

︸ ︷︷ ︸
→e−λ

λx

x!
I{0,1,...} (x)

so that X
asy∼ Poi (λ).
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Solutions to Chapter 5:

Multivariate Random Variables

Solution to Problem 5.1:

Pr (X1 > b1, X2 > b2) = Pr (b1 < X1 <∞, b2 < X2 <∞)

= 1 + FX1,X2 (b1, b2)− FX1 (b1)− FX2 (b2) .

Solution to Problem 5.2: From the nonnegativity of the variance and (6.4),

0 ≤ V
(
X1

σ1
+

X2

σ2

)
=

V (X1)

σ2
1

+
V (X2)

σ2
2

+ 2
Cov (X1X2)

σ1σ2
= 2 (1 + ρ) ,

where ρ = Corr (X1, X2), so that −1 ≤ ρ. Similarly,

0 ≤ V
(
X1

σ1
− X2

σ2

)
=

V (X1)

σ2
1

+
V (X2)

σ2
2

− 2
Cov (X1X2)

σ1σ2
= 2 (1− ρ) ,

implying that ρ ≤ 1. Together, this yields that |Corr (X1, X2)| ≤ 1.

Solution to Problem 5.3: For the inner integral in

I ≡ 2

∫ ∫
x<y

F (x)(1− F (y))dxdy,

take u = F (x) and dv = dx, so that∫ y

−∞
F (x)dx = F (x)x|y−∞ −

∫ y

−∞
xf(x)dx

= yF (y)−
∫ y

−∞
xf(x)dx =

∫ y

−∞
(y − x)f(x)dx

and substituting,

I = 2

∫ ∫
x<y

f(x)(y − x)(1− F (y))dxdy.

Integrating this expression with respect to y, using u = 1− F (y) and dv = (y − x) gives∫ ∞

x

(y − x)(1− F (y))dy =

{
1

2
(y − x)2(1− F (y))

}∣∣∣∣∞
x

+
1

2

∫ ∞

x

(y − x)2f(y)dy

=
1

2

∫ ∞

x

(y − x)2f(y)dy.

Thus,

I = 2× 1

2

∫ ∫
x<y

(y − x)2f(x)f(y)dxdy

=
1

2

∫ ∫
(y − x)2f(x)f(y)dxdy =

1

2
E
[
(X1 −X2)

2
]
.
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Solution to Problem 5.4: From the definitions,

E [P ] = Pr (P = 1) = Pr (at least one Bi is one) = Pr

(
n∪

i=1

Ai

)
,

so that

Pr

(
n∪

i=1

Ai

)
= E [P ] = E

[
1−

n∏
i=1

(1−Bi)

]

= E

 n∑
i=1

Bi −
∑
i<j

BiBj − · · ·+ (−1)n+1
B1 · · ·Bn


=

n∑
i=1

Pr (Ai)−
∑
i<j

Pr (AiAj)− · · ·+ (−1)n+1
Pr (A1 · · ·An) .

Solution to Problem 5.5: Starting with the boundary conditions, we have R0d = 1 for d > 0 and

Rs0 = 0 for s > 0. Then, for s and d both positive,

Rsd = pRs−1,d + qRs,d−1.

Solution to Problem 5.6: Program egg accomplishes this, given in Listings S-5.1 and S-5.2, with

sample output shown in Figures S-5.1, S-5.2 and S-5.3. Note the use of Matlab’s find and tabulate

functions in function getfreqs, which is necessary because not all n ∈ [r,max (needed)] will be

observed in the simulated values.
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Figure S-5.1: Histogram output from egg(30,10)
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function egg(r,k,reps,seed)

if nargin<2, k=r; end

if nargin<3, reps=5000; end

if nargin<4, seed=9999; end

rand(’seed’,seed); needed=zeros(reps,1);

for i=1:reps

toy=zeros(r,1); % boolean vector of r toys

count=0; % how many toys purchased.

while sum(toy)<k

newtoy = unidrnd(r,1,1); % same as ceil(N * rand(1,1));

toy(newtoy)=1; count=count+1;

end

needed(i)=count;

end

hist(needed,range(needed)+1); set(gca,’fontsize’,16)

title ([’Simulated density of Y_k for k=’,int2str(k)],’fontsize’,16);

ylabel ([’Freqency using ’, int2str(reps),’ replications’],’fontsize’,16)

xlabel ([’Minimum number of draws required to amass ’,int2str(k), ...

’ from ’,int2str(r),’ coupons’],’fontsize’,16);

i=0:k-1; mn= r*sum(1./(r-i)); vr= r*sum(i./(r-i).^2);

outm = [’Mean = ’,sprintf(’%0.3f’,mean(needed)), ...

’ (Theoretical: ’,sprintf(’%0.3f’,mn),’)’];

outv = [’Var = ’,sprintf(’%0.3f’,var(needed)), ...

’ (Theoretical: ’,sprintf(’%0.3f’,vr),’)’];

ax=axis;

text( 1*ax(1)/2+ax(2)/2, 10*ax(4)/11, outm, ’fontsize’, 12)

text( 1*ax(1)/2+ax(2)/2, 7*ax(4)/8, outv, ’fontsize’, 12)

if k==r % calculate true pdf values.

uplim=max(needed)+round(sqrt(r/2)); % extend to compare to true probs.

cdf=[]; for n=(r-1):uplim, cdf=[cdf F(n,r)]; end % see function F below

pdf=diff(cdf); % f(X=n) = F(X=n) - F(X=n-1) and F(X=N-1)=0.

emppmf = getfreqs(r,uplim,needed)/reps; % now it sums to one.

figure(2), plot(r:uplim,emppmf-pdf), grid, set(gca,’fontsize’,16)

end

Program Listing S-5.1: Simulate pmf of Yk and measure discrepancy between simulated and actual pmf. The program

is continued below in Listing S-5.2, where function getfreqs is given.
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Figure S-5.3: Density comparison output from egg(30,30,20000)

function out=getfreqs(r,uplim,needed);

% necessary because some values of n may not occur

out=zeros(1,uplim-r+1);

tab=tabulate(needed); % see below

for i=r:uplim

pos=find(tab(:,1)==i); % did we observe n=i?

if length(pos)>0 % yes, observed at least one value,

out(i-r+1)=tab(pos,2); % so record it in out

end % otherwise, it stays zero.

end

function P=F(n,r)

i=0:(r-1);

P=sum( gammaln(r+1) - gammaln(r-i+1) ...

- gammaln(i+1) + n*log((r-i)/r) + i*log(-1) );

P=real(exp(P));

Program Listing S-5.2: Listing S-5.1 continued. tabulate is a built–in Matlab function with output as two columns,

the first is the value, the second is the frequency
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Solutions to Chapter 6:

Sums of Random Variables

Solution to Problem 6.1:

a) Letting n = n1 + n2,

Pr (Y = y) =
∞∑

i=−∞
Pr (X1 = i) Pr (X2 = y − i)

=

y∑
i=0

(
n1

i

)
pi (1− p)

n1−i

(
n2

y − i

)
py−i (1− p)

n2−y+i

= py (1− p)
n1+n2−y

y∑
i=0

(
n1

i

)(
n2

y − i

)
=

(
n

y

)
py (1− p)

n−y
,

using the combinatoric identity (1.28).

b) With r = r1 + r2,

Pr (Y = y) =
∞∑

i=−∞
Pr (X1 = i) Pr (X2 = y − i)

=

y∑
i=0

(
r1 + i− 1

i

)
pr1 (1− p)

i

(
r2 + (y − i)− 1

y − i

)
pr2 (1− p)

y−i

= pr1+r2 (1− p)
y

y∑
i=0

(
r1 + i− 1

i

)(
r2 + y − i− 1

y − i

)
=

(
r + y − 1

y

)
pr (1− p)

y
,

using the combinatoric identity (1.58). Another way of verifying this identity is to recall (6.26),

i.e., (
w + b

w

)
=

b+k∑
x=k

(
x− 1

k − 1

)(
w + b− x

w − k

)
,

and substitute i = x − k, use that
(
a+b
a

)
=
(
a+b
b

)
, then substitute b = y, w = r1 + r2 and,

finally, k = r1. Doing so yields(
r1 + r2 + y

y

)
=

y∑
i=0

(
i+ r1 − 1

i

)(
y − i+ r2

y − i

)
,

which is the desired identity with r2 replaced by r2 − 1.

Solution to Problem 6.2:

67



a) If N is the number of rolls needed, N =
∑3

i=1 Xi, where the Xi are independent geometric

variables with probability p = 3
6 ,

2
6 and 1

6 , respectively, so that E [N ] = 2 + 3 + 6 = 11.

b) Now, X1 = 1, while X2 and X3 are independent geometric variables with respective probabil-

ities p = 5
6 and 4

6 , so that E [N ] = 1 + 6/5 + 6/4 = 3.7.

Solution to Problem 6.3:

a) n is just
(
r
2

)
or r (r − 1) /2, and p is the probability that 2 people have the same birthday, or

1/365.

b) (a) The events are independent because they involve different people from the group, and

Pr (E1,2 | E3,4) = Pr (E1,2) = 1/365. (b) Because we condition on E1,2 this is just the prob-

ability that person 3 has the same birthday as person 1, irrespective of the fact that persons

1 and 2 have the same birthday. Thus Pr (E1,3 | E1,2) = 1/365. (c) Clearly persons 2 and 3

have the same birthday, so Pr (E2,3 | E1,2 ∩ E1,3) = 1. Thus, trials are pairwise independent,

but not otherwise.

c) Using the complement,

p∗ = 1− Pr (no birthdays in common) ≈ 1− e−λλ0

0!
= 1− e−λ

where λ = np = [ r (r − 1) /2 ] / 365. Solving yields

r =
⌈
0.5 + 0.5

√
(1− 2920 ln (1− p∗))

⌉
,

the same answer in part 12 of Example 6.2.1.

d) Now we have
(
r
3

)
= r(r−1)(r−2)

6 trials, with probability p = 365−2, so that, as before,

0.5 = 1− Pr (no birthdays in common) ≈ 1− e−λλ0

0!
,

where λ = np = [ r (r − 1) (r − 2) /6 ] / 3652 or

0.693 = log (2) =
r (r − 1) (r − 2) /6

3652
.

Instead of solving, note that 84(84−1)(84−2)/6
3652 = 0.715 and 83(83−1)(83−2)/6

3652 = 0.690, so that

r = 84 is the smallest integer for which pr,3 ≥ 0.5 is satisfied.

Solution to Problem 6.4:

a) Define Xi to be

Xi =

{
1, if ith pair is man-woman

0, otherwise

for i = 1, . . . , 6. Then

E [X] = E

[
6∑

i=1

Xi

]
=

6∑
i=1

E [Xi] =
6∑

i=1

Pr (Xi = 1) = 6E [X1] ,

because the probability is the same for each pair. To calculate E [X1], consider just one man.

He has a 6/11 chance of being paired with a woman, so that E [X1] =
6
11 and, thus,

E [X] =
36

11
. (S-6.1)

Write the variance as

V (X) = V

(
6∑

i=1

Xi

)
=

6∑
i=1

V (Xi) +
∑
i ̸=j

Cov (XiXj) ,
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and note that, for i ̸= j,

E [XiXj ] = Pr (Xi = 1, Xj = 1) = Pr (Xj = 1 | Xi = 1)Pr (Xi = 1) =
5

9

6

11
,

so that

Cov (XiXj) = E [XiXj ]− E [Xi]E [Xj ] =
5

9

6

11
−
(

6

11

)2

.

The Xi are boolean random variables, so V (Xi) =
6
11

(
1− 6

11

)
, and

V (X) = 6 · 6
11

(
1− 6

11

)
+ 6 · 5

[
5

9

6

11
−
(

6

11

)2
]
=

380

121
≈ 1.653. (S-6.2)

b) As in the previous question, for a given man, he has a 1
11 chance of getting his wife, so

E [X] = 6
11 . Similarly,

V (X) = 6
1

11

(
1− 1

11

)
+ 6 · 5

[
1

9

1

11
−
(

1

11

)2
]
=

2030

363
≈ 5.59.

Solution to Problem 6.5:

µ′
[g] =

N∑
r=1

fR (r) r (r − 1) · · · (r − g + 1)

=
1(

Z+N
N

) N∑
r=1

(
N − 1

r − 1

)
(Z + 1)Z (Z − 1) · · · (Z − r + 2)

r!
r (r − 1) · · · (r − g + 1)

=
1(

Z+N
N

) N∑
r=1

(
N − 1

r − 1

)
(Z + 1)Z (Z − 1) · · · (Z − r + 2)

(r − g)!

and multiplying this by

1 =
(r − g)!

(Z + 1− g) · · · (Z + 2− r)

(
Z + 1− g

r − g

)
and cancelling terms,

µ′
[g] =

(Z + 1)[g](
Z+N
N

) N∑
r=1

(
N − 1

r − 1

)(
Z + 1− g

r − g

)
,

where the sum could go from r = g instead of r = 1. This can be simplified further by using (1.55),

i.e., (
Q+M

k +M

)
=

M∑
i=0

(
Q

k + i

)(
M

i

)
.

With i = r − 1,

N∑
r=1

(
N − 1

r − 1

)(
Z + 1− g

r − g

)
=

N−1∑
i=0

(
N − 1

i

)(
Z + 1− g

i+ 1− g

)
=

(
(Z + 1− g) + (N − 1)

(1− g) + (N − 1)

)
=

(
Z +N − g

N − g

)
,

so that

µ′
[g] =

(Z + 1)[g](
Z+N
Z

) (
N + Z − g

N − g

)
,

as was to be shown.
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Solution to Problem 6.6: From the definition of expected value and using (6.12) for the three cases

r0 = r1, r0 = r1 − 1 and r0 = r1 + 1,

µ′
[g0,g1]

=

Z∑
r0=1

N∑
r1=1

fR0,R1 (r0, r1) (r0 − 1)[g0] (r1 − 1)[g1]

= 2
U∑

r=1

(
Z−1
r−1

)(
N−1
r−1

)(
Z+N
Z

) (r − 1)[g0] (r − 1)[g1]

+
U∑

r=1

(
Z−1
r−1

)(
N−1
r

)(
Z+N
Z

) (r − 1)[g0] (r)[g1]

+
U∑

r=1

(
Z−1
r

)(
N−1
r−1

)(
Z+N
Z

) (r)[g0] (r − 1)[g1] ,

where U can be taken to be either Z or N (or anything larger). The first term is, say,

A

(
Z +N

Z

)
= 2

U∑
r=1

(Z − 1) (Z − 2) · · · (Z + 1− r)

(r − g0 − 1)!

(N − 1) (N − 2) · · · (N + 1− r)

(r − g1 − 1)!

= 2 (Z − 1)[g0] (N − 1)[g1]

U∑
r=1

(
Z − 1− g0
r − g0 − 1

)(
N − 1− g1
r − g1 − 1

)
obtained by multiplying by the two terms

1 =

(
Z − 1− g0
r − g0 − 1

)
(r − g0 − 1)!

(Z − 1− g0) · · · (Z − r + 1)

and

1 =

(
N − 1− g1
r − g1 − 1

)
(r − g1 − 1)!

(N − 1− g1) · · · (N − r + 1)

for g0 < r, g1 < r, and simplifying. Similarly, the second term is

B

(
Z +N

Z

)
=

U∑
r=1

(Z − 1) · · · (Z + 1− r)

(r − g0 − 1)!

(N − 1) · · · (N − r)

(r − g1)!

= (Z − 1)[g0] (N − 1)[g1]

U∑
r=1

(
Z − 1− g0
r − g0 − 1

)(
N − 1− g1

r − g1

)
and, by symmetry, the third must be

C

(
Z +N

Z

)
= (Z − 1)[g0] (N − 1)[g1]

U∑
r=1

(
Z − 1− g0
r − g0

)(
N − 1− g1
r − g1 − 1

)
.

Factoring out (Z − 1)[g0] (N − 1)[g1] from terms A,B and C, splitting up the 2
∑U

r=1 term in A and

then using (1.4) to combine the binomial coefficients,

A+B + C =
(Z − 1)[g0] (N − 1)[g1] (D + E)(

Z+N
Z

) ,

where

D =

U∑
r=1

(
Z − 1− g0
r − g0 − 1

)(
N − g1
r − g1

)
, E =

U∑
r=1

(
N − 1− g1
r − g1 − 1

)(
Z − g0
r − g0

)
.

Next, as
(
a
b

)
= 0 for a < b and with s = r − g0 − 1 and using U = Z,

D =
Z∑

r=g0+1

(
Z − 1− g0
r − g0 − 1

)(
N − g1
r − g1

)
=

Z−g0−1∑
s=0

(
Z − 1− g0

s

)(
N − g1

s+ g0 + 1− g1

)
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and, similarly, but taking U = N ,

E =

N−g1−1∑
s=0

(
N − 1− g1

s

)(
Z − g0

s+ g1 − g0 + 1

)
.

Now applying (1.55), i.e., (
Q+M

k +M

)
=

M∑
i=0

(
Q

k + i

)(
M

i

)
,

to D and E, it follows that

D =

Z−g0−1∑
i=0

(
Z − 1− g0

i

)(
N − g1

i+ g0 + 1− g1

)
=

(
N − g1 + Z − 1− g0

g0 + 1− g1 + Z − 1− g0

)
=

(
Z +N − g0 − g1 − 1

Z − g1

)
and

E =

N−g1−1∑
s=0

(
N − 1− g1

s

)(
Z − g0

s+ g1 − g0 + 1

)
=

(
Z − g0 +N − 1− g1

g1 − g0 + 1 +N − 1− g1

)
=

(
Z +N − g0 − g1 − 1

Z − g1 − 1

)
.

Finally, using (1.4),

D + E =

(
Z +N − g0 − g1

Z − g1

)
and the identity is proven.

Solution to Problem 6.7:

a) Generalizing (6.30) and (6.31),

Pr (X = x) =
x∑

i=0

Pr (X1 = i)
x−i∑
j=0

Pr (X2 = j) Pr (X3 = x− i− j)

and

Pr (X ≤ x) =

x∑
i=0

Pr (X1 ≤ i)

x−i∑
j=0

Pr (X2 = j) Pr (X3 = x− i− j) .

b) These are seen to be

E [X] =
3∑

i=1

E [Xi] =
r1 (1− p1)

p1
+

r2 (1− p2)

p2
+

r3 (1− p3)

p3
= 24

and

V (X) =

3∑
i=1

V (Xi) =
r1 (1− p1)

p21
+

r2 (1− p2)

p22
+

r3 (1− p3)

p23
= 69.3333.

c) Listing S-6.1 provides a program for scalar x values. From the Matlab prompt, run the

following:

p=zeros(71,1);

for x=0:70, p(x+1)=negbin3(x,4,1/4,8,2/4,12,3/4); end

plot(0:70, p), hold on

plot(0:70, normpdf(0:70,24,sqrt(69.3333)),’r--’), hold off
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function [pdf,cdf] = negbin3 (x,r1,p1,r2,p2,r3,p3)

global cdfstart

if r1==0

j=0:x;

pdf = sum( negbinpdf(j,r2,p2) .* negbinpdf(x-j,r3,p3) );

if nargout>1

cdf = sum( cumsum(negbinpdf(j,r2,p2)) .* negbinpdf(x-j,r3,p3) );

end

else

cdfstart=0; pdf=0; cdf=0;

for i=0:x

j=0:(x-i);

t=sum( negbinpdf(j,r2,p2) .* negbinpdf(x-i-j,r3,p3) );

pdf=pdf+t*negbinpdf(i,r1,p1);

if nargout>1

cdf=cdf+t*negbincdf(i,r1,p1);

end

end

end

function den = negbinpdf(x,r,p)

% den=c(r+x-1,x) .* p.^r .* (1-p).^x;

d=gammaln(r+x) - gammaln(x+1) - gammaln(r) + r*log(p) + x * log(1-p);

den=exp(d);

function cdf = negbincdf(x,r,p)

global cdfstart

start=cdfstart; % start=sum(negbinpdf(0:(x-1),r,p));

cdf=start + negbinpdf(x,r,p);

cdfstart = cdf; % prepare for next call to negbincdf

Program Listing S-6.1: Computation of the pmf (and cdf if requested) of X = X1+X2+X3, where Xi
ind∼ NBin (ri, pi).

Set r1 to zero for computing the convolution of just X2 and X3.
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Figure S-6.1: Exact density of X (solid) and normal approximation (dashed)

The resulting graph is shown in Figure S-6.1. Clearly, X is poorly approximated as a normal

distribution.

Solution to Problem 6.8:

— First note that S1 ∼ Bin (20, p1) and S2 ∼ Bin (20, p2).

a) Pr (S1 > S2) = g (20), where

g (n) :=
n∑

i=1

Pr (S1 = i) · Pr (S2 < i)

=
n∑

i=1

(n
i

)
pi1 (1− p1)

n−i
i−1∑
j=0

(
n

j

)
pj2 (1− p2)

n−j

 .

b) Similarly, Pr (S1 ≥ 2S2) = h(20), where

h (n) :=
n∑

i=1

Pr (S1 = i) · Pr
(
S2 <

i

2

)

=

n∑
i=1

(
n

i

)
pi1 (1− p1)

n−i
[i/2]∑
j=0

(
n

j

)
pj2 (1− p2)

n−j
.

c) The event {S1 > S2} is a Bernoulli random variable with parameter p20, where p20 := g (20),

so that E [{S1 > S2}] = p20 and Var ({S1 > S2}) = p20 (1− p20).

d) B ∼ Bin (4, p5), where p5 := g (5), so Pr (B > 2) =
∑4

i=3

(
4
i

)
pi5 (1− p5)

4−i
and Var (B) =

4p5 (1− p5).

e) Information is lost by only examining the Bi.

Solution to Problem 6.9:

a) 1. For k = 1, {N1n = 0} occurs if A is already in his seat, and {N1n = 1} if not, so that

Pr (N1n = 0) =
1

n
, Pr (N1n = 1) =

n− 1

n

and

E [N1n] = 0 · Pr (N1n = 0) + 1 · Pr (N1n = 1) =
n− 1

n
.

Note that event {N1n = 1} can only occur if n ≥ 2.
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2. For k = 2, there can be zero, one or two people at the front. Event {N2n = 0} can happen

if chairs one and two are filled with A and B, i.e., the two people which belong there, in

either order, so that

Pr (N2n = 0) =
2

n (n− 1)
=

(
2
2

)(
n−2
0

)(
n
2

) .

Event {N2n = 1} can happen if at the beginning, the first two seats are (in either order),

AX, BX, where X /∈ {A,B}. Each of these occur with the same probability; thus

Pr (N2n = 1) = 4
1

n

n− 2

n− 1
.

Lastly, event {N2n = 2} happens if chairs one and two consist of XY, where X,Y /∈ {A,B},
with probability

Pr (N2n = 2) =
n− 2

n

n− 3

n− 1
=

(
2
0

)(
n−2
2

)(
n
2

) .

Note that event {N2n = 2} can occur only if n ≥ 4. Assuming this,

E [N2n] = 1 · 4
n

n− 2

n− 1
+ 2 · n− 2

n

n− 3

n− 1

= 2
n− 2

n
, n ≥ 4.

3. Now for k = 3. It is clear that event {N2n = 0} can happen if chairs one, two and three

are filled with the three people who belong there (A,B and C), in either order, i.e.,

Pr (N3n = 0) =

(
3
3

)(
n−3
0

)(
n
3

) =
6

n (n− 1) (n− 2)
.

Similarly, with X /∈ {A,B,C}, event {N2n = 1} occurs when one of the events, in any of

their 3! orders, {ABX} , {ACX} and {BCX}, so that

Pr (N3n = 1) =

(
3
2

)(
n−3
1

)(
n
3

) .

Likewise, with X,Y /∈ {A,B,C} , event {N2n = 2} occurs when one of the events, in any

of their 3! orders, {AXY} , {BXY} and {CXY}, so that

Pr (N3n = 2) =

(
3
1

)(
n−3
2

)(
n
3

) .

The same logic leads to

Pr (N3n = 3) =

(
3
0

)(
n−3
3

)(
n
3

) ,

where event {N3n = 3} can occur only if n ≥ 6. Assuming this,

E [N3n] =
1(
n
3

) (1 · (3
2

)(
n− 3

1

)
+ 2 ·

(
3

1

)(
n− 3

2

)
+ 3 ·

(
3

0

)(
n− 3

3

))
= 3

n− 3

n
, n ≥ 6,

after simplifying.

b) Based on the above results, one is behooved to generalize this to Pr (Nkn = j) in the natural

way. Obviously, 0 ≤ j ≤ k, and a bit of thought and trial and error reveals that, for n even,

j can be at most n/2, and for n odd, j can be at most (n− 1) /2. Thus, with ⌊n/2⌋ the floor

function,

Pr (Nkn = j) =

(
k

k−j

)(
n−k
j

)(
n
k

) I{0,1,...,min(k,⌊n/2⌋)} (j) , 1 ≤ k < n. (S-6.3)
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Figure S-6.2: Mass function of N10,20 determined via simulation

That this sums to one was shown in (1.33).

Note that (S-6.3) is the pmf of a hypergeometric distribution; in particular, with the denomi-

nator in (S-6.3) written as
(

n
n−k

)
instead of

(
n
k

)
, we see that

Nkn ∼ HGeo (j; k, n− k, n− k) . (S-6.4)

It thus follows directly from (6.21) that

E [Nkn] =
(n− k) k

k + (n− k)
= k

n− k

n
.

c) Having worked hard for the previous answer and learned a bit, we can now try to work smart :

Result (S-6.4) could be arrived at immediately by noticing that the probability that j students

are standing in front after k names have been called equals the probability that, out of the

n − k students whose names have not been called, j have been sitting in one of the first k

chairs.

d) See the program in Listing S-6.2. Calling V=classroom(20,1000); simulates the “classroom”

of 20 people 1,000 times, from which any function of interest can be estimated. For example,

hist(V(:,10),20) produces the mass function of N10,20, as is plotted in Figure S-6.2, which

can be compared to the exact values given by (S-6.3).
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function V=classroom(n,sim,kmax)

if nargin<3, kmax=n-1; end

V=-9999*ones(sim,kmax);

for s=1:sim

class = permvec(n); % build the class

front=[];

for i=1:kmax % go through the seats

if class(i) ~= i % Person i is not in the ith seat

if class(i)>0

% someone is sitting there, and it is the wrong person

front=union(front,class(i)); % put him in front of the class

class(i)=0; % his seat is now empty

end

% Now the ith seat is definitely empty.

% Let’s fill it with the ith person.

if ismember(i,front) % is the correct person in the front?

front=setdiff(front,i); % take him out of the front...

else % He is in some seat between the (i+1)th and nth

loc=find(class==i); % find him

class(loc)=0; % take him out of his seat...

end

class(i)=i; % ...and put him where he belongs.

end

V(s,i)=length(front);

end

end

function y = permvec(N)

x=1:N; y=zeros(N,1);

for i=1:N

p = unidrnd(N+1-i); y(i) = x(p); x=[x(1:(p-1)) x((p+1):(N-i+1))];

end

Program Listing S-6.2: Simulates the “classroom”, whereby n students were seated randomly and the instructor goes

through the rows, seating people alphabetically; those who are in the wrong seat go to the front of the class. For the sth

classroom simulation and at the ith desk, i = 1, . . . , kmax, V (s, i) contains the number of students waiting at the front of

the classroom to be seated.
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Solutions to Chapter 7:

Continuous Univariate Random

Variables

Solution to Problem 7.1:

a) We want

E [T ] =

∫ ∞

−∞
tfT (t;n) dt = Kn

∫ ∞

−∞
t

(
1 +

t2

n

)−k

dt,

where k = (n+ 1) /2. Let’s ignore Kn for now, and just look at the integral. Split it at zero

(because we have t2 in the integrand) and let u = t2. Then, for t < 0, the solution is t = −
√
u,

with dt = −1
2u

−1/2du. Also, when t = −∞ (the lower bound in the integral) u = ∞, and

when t = 0 (the upper bound), u = 0. So,∫ 0

−∞
t

(
1 +

t2

n

)−k

dt =

∫ 0

+∞

(
−
√
u
) (

1 +
u

n

)−k
(
−1

2
u−1/2du

)
=

1

2

∫ 0

∞

(
1 +

u

n

)−k

du

= −1

2

∫ ∞

0

(
1 +

u

n

)−k

du

Similarly, for t > 0, the solution is t = +
√
u, with dt = 1

2u
−1/2du, and the integral is∫ ∞

0

t

(
1 +

t2

n

)−k

dt =

∫ ∞

0

u1/2
(
1 +

u

n

)−k 1

2
u−1/2du

=
1

2

∫ ∞

0

(
1 +

u

n

)−k

du.

Thus, adding the two pieces, we get that E [T ] = 0, if the integral

I =

∫ ∞

0

(
1 +

u

n

)−k

du

exists. Now, let v = 1 + u/n, so that u = n (v − 1) and du = ndv, and

I = n

∫ ∞

1

v−kdv =
n

1− k
v1−k

∣∣∞
v=1

=

{ n

k − 1
, if k > 1,

∞, if k ≤ 1.

Thus, E [T ] = 0 if k > 1, which is the same as k = (n+ 1) /2 > 1, or n > 1.

b) First observe that, because of symmetry, the density of |T | is just

f|T | (t) = 2fT (t;n) I(0,∞) (t) .
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Let

u =
t2/n

1 + t2/n
, t = +

√
n

u

1− u
, dt =

n1/2

2
u−1/2 (1− u)

−3/2
du,

so that, after some simplifying,

E
[
|T |k

]
= 2

n−1/2

B
(
n
2 ,

1
2

) ∫ ∞

0

tk
(
1 +

t2

n

)−n+1
2

dt

=
nk/2

B
(
n
2 ,

1
2

) ∫ 1

0

u(k−1)/2 (1− u)
(n−k−2)/2

du

=
nk/2

B
(
n
2 ,

1
2

)B(k + 1

2
,
n− k

2

)
.

This simplifies further to

E
[
|T |k

]
= nk/2Γ

(
k+1
2

)
Γ
(
n−k
2

)
Γ
(
k+1
2 + n−k

2

) Γ
(
n
2 + 1

2

)
Γ
(
n
2

)
Γ
(
1
2

) = nk/2Γ
(
k+1
2

)
Γ
(
n−k
2

)
Γ
(
n
2

)
Γ
(
1
2

) . (S-7.1)

c) From the argument of the second gamma term in the numerator of (S-7.1), we see that E
[
|T |k

]
exists only if n > k.

d) For k = 2, we have, for n > 2, that E
[
|T |2

]
= E

[
T 2
]
, and E

[
T 2
]
= V (T ) because E [T ] = 0.

Thus, from (S-7.1),

V (T ) = n
Γ
(
3
2

)
Γ
(
1
2

) Γ (n−2
2

)
Γ
(
n
2

) = n
1
2Γ
(
1
2

)
Γ
(
1
2

) Γ
(
n−2
2

)(
n
2 − 1

)
Γ
(
n
2 − 1

) =
n

2

1
n
2 − 1

=
n

n− 2
.

e) Use the substitution u = 1+x2/n (so that x = −n1/2 (u− 1)
1/2

and dx = −n1/2 (1/2) (u− 1)
−1/2

du),

followed by n = (u− 1) /u (so that u = (1− n)
−1

and du = (1− n)
−2

dn) to get

FT (t) =
n−1/2

B (n/2, 1/2)

∫ t

−∞

(
1 + x2/n

)−(n+1)/2
dx

=
1

2B (n/2, 1/2)

∫ ∞

1+t2/n

u−(n+1)/2 (u− 1)
−1/2

du

=
1

2B (n/2, 1/2)

∫ 1

1−L

n−1/2 (1− n)
(n−2)/2

dn,

where

1− L =
t2/n

1 + t2/n
=

t2

n+ t2
= 1− n

n+ t2
.

Thus, as ∫ 1

g

na−1 (1− n)
b−1

dn =

∫ 1−g

0

yb−1 (1− y)
a−1

dy,

we have

FT (t) =
1

2B (n/2, 1/2)

∫ L

0

y(n−2)/2 (1− y)
−1/2

dy =
1

2
B̄L (n/2, 1/2) .

Solution to Problem 7.2: Letting c denote the desired quantile, we have

1− α =
2/n

B (1, n/2)

∫ c

0

(
1 +

2

n
x

)−(2+n)/2

dx = 1−
(

n

n+ 2c

)n/2

or c = n
(
α−2/n − 1

)
/2.
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Solution to Problem 7.3: Using
∫
udv = uv −

∫
vdu with u = x and dv = e−xdx,∫ ∞

0

xe−xdx = −xe−x
∣∣∞
0
−
∫ ∞

0

−e−xdx = −xe−x
∣∣∞
0
− e−x

∣∣∞
0

= − lim
x→∞

x

ex
− (−1) = 1− lim

x→∞

1

ex
= 1,

from l’Hôpital’s rule. Alternatively, notice that
∫∞
0

xe−xdx = E [Y ], where Y ∼ exp (1), but

E [Y ] = 1.

Solution to Problem 7.4: Some trial and error shows that the substitution u = r/ (1 + r) is advanta-

geous. With it, r = u/ (1− u), 1 + r = 1/ (1− u) and dr = (1− u)
−2

du, so that∫ 1

0

ra−1 (1 + r)
−2a

dr =

∫ 1/2

0

(
u

1− u

)a−1

(1− u)
2a

(1− u)
−2

du

=

∫ 1/2

0

ua−1 (1− u)
a−1

du =
B (a, a)

2
.

Similarly, the expected value of R is∫ 1

0

rfR (r) dr =
2

B (a, a)

∫ 1

0

ra (1 + r)
−2a

dr

2

B (a, a)

∫ 1/2

0

(
u

1− u

)a

(1− u)
2a

(1− u)
−2

du

=
2

B (a, a)

∫ 1/2

0

ua (1− u)
a−2

du = 2
B1/2 (a+ 1, a− 1)

B (a, a)
,

as was determined in Example 7.10.

Solution to Problem 7.5: Using the substitution c = νx2, then dc/dx = 2νx and, from (7.65),

fX (x) =

∣∣∣∣ dcdx
∣∣∣∣ fC (c) = 2νx · 2−ν/2

Γ (ν/2)

(
νx2
)ν/2−1

e−(νx
2)/2I(0,∞)

(
νx2
)

=
2−ν/2+1νν/2

Γ (ν/2)
xν−1e−(νx

2)/2I(0,∞) (x) .

For ν = 1,

fX (x) =

√
2√
π
exp

{
−1

2
x2

}
I(0,∞) (x) ,

with expected value

E [X] =

√
2√
π

∫ ∞

0

x exp

{
−1

2
x2

}
dx =

√
2√
π

(
−e− 1

2x
2
)∣∣∣∞

0
=

√
2√
π
,

which is, of course, the same result as given in (7.39). For the second moment, substitute u = x2/2

so that x = +
√
2u (because x > 0), dx = (2u)

−1/2
du and

E
[
X2
]
=

2√
π

∫ ∞

0

u1/2 exp {−u} du =
2√
π
Γ (3/2) = 1,

recalling that Γ (3/2) =
√
π/2. Thus, V (X) = 1− 2/π ≈ 0.36338.

Solution to Problem 7.6: Similar to Example 7.14,

FY (y) = Pr (Y ≤ y) = Pr (−√y ≤ X ≤ √y) = FX (
√
y)− FX (−√y)

= Φ

(√
y − µ

σ

)
− Φ

(−√y − µ

σ

)
.
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Differentiating,

fY (y) =
1

2σ
√
y

(
ϕ

(√
y − µ

σ

)
+ ϕ

(
−√y − µ

σ

))
=

1

2σ
√
y

1√
2π

(
exp

{
−1

2

(√
y − µ

σ

)2
}

+ exp

{
−1

2

(
−√y − µ

σ

)2
})

for y > 0. This can also be written as

fY (y) =
1

2σ
√
y

1√
2π

exp

(
−y + µ2

2σ2

)(
exp

(
µ
√
y

σ2

)
+ exp

(
−
µ
√
y

σ2

))
.

The expected value appears difficult to calculate directly, but there is no need: From (4.49), E [Y ] =

E
[
X2
]
= σ2 + µ2. For the variance, with k = E

[
X2
]
= σ2 + µ2,

V (Y ) = V
(
X2
)
= E

[(
X2 − k

)2]
= E

[
X4
]
− k2

and, from (4.49) and Example 7.3,

E
[
X4
]
= µ4 + 4µ3µ+ 6µ2µ

2 + µ4 = 3σ4 + 6σ2µ2 + µ4

so that

V (Y ) = 3σ4 + 6σ2µ2 + µ4 −
(
σ2 + µ2

)2
= 2σ2

(
σ2 + 2µ2

)
.

Solution to Problem 7.7: With y = axb, x = (y/a)
1/b

and dx = (ab)
−1

(y/a)
1/b−1

dy so that, from

(7.65),

fY (y) = fX (x)

∣∣∣∣dxdy
∣∣∣∣ = n1/n2

abB
(
n1

2 , n2

2

)
(

n1

n2
(y/a)

1/b
)

n1/2−1(
1 + n1

n2
(y/a)

1/b
)(n1+n2)/2

(y
a

)1/b−1

I(0,∞) (y)

=
an2/(2b)

b

(n2/n1)
n2/2

B (n1/2, n2/2)

y(n1−2b)/(2b)(
a1/bn2/n1 + y1/b

)(n1+n2)/2
I(0,∞) (y)

=
(n1/n2)

n1/2

abB (n1/2, n2/2)

(y/a)
n1/(2b)−1(

1 + (n1/n2) (y/a)
1/b
)(n1+n2)/2

I(0,∞) (y) ,

after some simplification. The cdf is easily seen to be

FY (y) = FX

(
(y/a)

1/b
)
= B̄y

(n1

2
,
n2

2

)
, y =

n1 (y/a)
1/b

n2 + n1 (y/a)
1/b

.

The raw moments are simply given by E [Y r] = E
[(
aXb

)r]
= arE

[
Xbr

]
.

Solution to Problem 7.8: From (7.68) we require

lim
x→0+

fZ (x)

xr
= lim

x→0+

βα

Γ (α)

xα−1e−βx

xr
∝ lim

x→0+
xα−1−r

to be finite. This holds when α > 1. Recall that this is a sufficient (but not necessary) condition,

so that this does not show that E
[
Z−1

]
does not exist for α ≤ 1.

Solution to Problem 7.9:
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a) For E [Z] with c = βz,

E [Z] =

∫ ∞

0

βα

Γ (α)
zα exp (−βz) dz =

βα

Γ (α)

∫ ∞

0

(
c

β

)α

exp (−c) 1
β
dc

=
1

βΓ (α)
Γ (α+ 1) =

α

β
.

Similarly,

E
[
Z−1

]
=

β

α− 1
.

Both of these could also be obtained directly from the more general expression in (7.9).

b) With z = 1/y and dz/dy = −y−2, (7.65) gives

fY (y) = fZ (z) · y−2 =
βα

Γ (α)

(
1

y

)α−1

e−
1
y βI(0,∞) (z) · y−2

=
βα

Γ (α)
y−(α+1)e−

β
y I(0,∞) (y) . (S-7.2)

As f (y;α, β) = β−1f (y/β;α, 1), β is a (genuine) scale parameter. Of course, this follows

without recourse to the density, because, if G ∼ Gam(α, 1), then Z = G/β ∼ Gam(α, β),

G−1 ∼ IGam(α, 1) and Y = 1/Z = β/G is just a scale value (β) times a scale–one inverse

gamma random variable.

c) Because Y > 0,

Pr (Y ≤ y) = Pr

(
1

Y
≥ 1

y

)
= 1− Pr

(
Z ≤ y−1

)
,

where Z ∼ Gam(a, b).

d) Using (S-7.2) and the change of variable x = β/y, y = β/x, dy = −βx−2dx,

µ′
r = E [Y r] =

βα

Γ (α)

∫ ∞

0

yr−(α+1)e−
β
y dy = − βα

Γ (α)

∫ 0

∞

(
β

x

)r−(α+1)

e−xβx−2dx

=
βα

Γ (α)

∫ ∞

0

(
β

x

)r−(α+1)

e−xβx−2dx =
βr

Γ (α)

∫ ∞

0

(
1

x

)r−α+1

e−xdx

=
βr

Γ (α)

∫ ∞

0

x(α−r)−1e−xdx =
Γ (α− r)

Γ (α)
βr.

For r = 1,

E [Y ] = β
Γ (α− 1)

Γ (α)
=

β

α− 1
,

which is, of course, just E
[
Z−1

]
as found previously. From (7.9),

E
[
Z−2

]
=

β2

(α− 1) (α− 2)

so that, with Y = 1/Z,

V (Y ) = E
[
Y 2
]
− (E [Y ])

2
=

β2

(α− 1) (α− 2)
−
(

β

α− 1

)2

=
β2

α− 1

(
1

α− 2
− 1

α− 1

)
=

β2

(α− 1)
2
(α− 2)

. (S-7.3)

e) Clearly, E [Z] and E
[
Z−1

]
are not reciprocals, but

α

β
− α− 1

β
= β−1 (S-7.4)
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and
β

α− 1
− β

α
=

β

α (α− 1)
(S-7.5)

so that, from the first, β needs to be large and, from the second, α2 needs to be large, but such

that β/α2 goes to zero. This is satisfied, for example, with α = cβ, c > 0, and then taking the

limit as β →∞. In particular, (S-7.4) clearly goes to zero as β →∞, while (S-7.5) gives

lim
β→∞

β

α (α− 1)
= lim

β→∞

1

c (cβ − 1)
= 0.

Notice that E [Z] = α/β = cβ/β = c stays constant, but V (Z) = α/β2 = c/β → 0. Thus, as

α and β increase such that α = cβ, the density piles up onto the point c. Clearly then, the

density of its reciprocal will pile up onto 1/c, with expected value 1/c and zero variance. To

see the latter, from (S-7.3),

lim
β→∞
α=cβ

V (Y ) = lim
β→∞

β2

(cβ − 1)
2
(cβ − 2)

= 0.

Solution to Problem 7.10: With y = x− 1,

I =

∫ 1

−1

(y + 1) e−y2

dy =

∫ 1

−1

ye−y2

dy +

∫ 1

−1

e−y2

dy = 0 +

∫ 1

−1

e−y2

dy

and, with σ2 = 1/2,∫ 1

−1

e−y2

dy =
√
2πσ

∫ 1

−1

1√
2πσ

e−
y2

2σ2 dy =
√
2πσPr (−1 ≤ X ≤ 1)

where X ∼ N
(
0, σ2

)
. But

Pr (−1 ≤ X ≤ 1) = Pr

(
−1

1/
√
2
≤ Z ≤ 1

1/
√
2

)
= 1− 2Φ

(
−
√
2
)
,

where Z ∼ N(0, 1), i.e., I =
√
2πσ

(
1− 2Φ

(
−
√
2
))

= 1.4936483.

Solution to Problem 7.11: We recognize I to be E
[
X2
]
, where X ∼ N

(
0, σ2

)
, σ = 1/

√
2, without

the constant term. As E
[
X2
]
= µ2 + σ2 = 1/2,

1

2
=

1√
2πσ

∫ ∞

−∞
x2 exp

(
−1

2

(x
σ

)2)
dx =

1√
π

∫ ∞

−∞
x2e−x2

dx,

so that I =
√
π/2.

Solution to Problem 7.12:

a) Necessity means that, if E [X] exists, then

lim
x→∞

x (1− FX (x)) = 0.

If E [X] =
∫∞
0

t fX (t) dt exists, then

lim
x→∞

∫ ∞

x

t fX (t) dt = 0.

So, as limx→∞ x (1− FX (x)) ≥ 0 and

lim
x→∞

x (1− FX (x)) = lim
x→∞

x

∫ ∞

x

fX (t) dt ≤ lim
x→∞

∫ ∞

x

t fX (t) dt = 0,

82



it follows that limx→∞ x (1− FX (x)) = 0.

To show that the expectation of a Cauchy random variable does not exist, note that the

theorem is valid for nonnegative r.v.s, so, we must first show that we apply it to E
[
|X|
]
.

Observe that, if X is a random variable with density fX symmetric about zero, then fX (−x) =
fX (x) and, substituting u = −x,

E [X] =

∫ 0

−∞
xfX (x) dx+

∫ ∞

0

xfX (x) dx = −
∫ ∞

0

ufX (u) du+

∫ ∞

0

xfX (x) dx = 0,

if
∫∞
0

xfX (x)dx exists. If it does, then, as E [g (X)] =
∫
g (x) f (x)dx,

E [|X|] =

∫ 0

−∞
|x| fX (x) dx+

∫ ∞

0

|x| fX (x) dx

=

∫ 0

−∞
(−x) fX (x) dx+

∫ ∞

0

xfX (x) dx

= −
∫ 0

−∞
xfX (x) dx+

∫ ∞

0

xfX (x) dx = 2

∫ ∞

0

xfX (x) dx,

where
∫ 0

−∞ xfX (x)dx = −
∫∞
0

ufX (u)du from above.

The latter result can also be seen as follows. If Z = |X| and fX is symmetric about zero, then

FZ (z) = Pr (Z ≤ z) = Pr (|X| ≤ z) = Pr (−z ≤ X ≤ z)

= FX (z)− FX (−z) = [1− FX (−z)]− FX (−z)
= 1− 2FX (−z)

and

fZ (z) =
dFZ (z)

dz
= −(−1)2fX(−z) = 2fX(z),

so that E [|X|] = 2
∫∞
0

xfX (x) dx.

We see that, if fX (−x) = fX (x) and E [X] exists, then E [|X|] exists. The contrapositive then
implies that, if E [|X|] does not exist, then E [X] does not exist.

If X is the absolute value of a standard Cauchy random variable, then

fX (x) =
2

π

1

1 + x2
and FX (x) =

2

π
arctan (x) .

As limx→∞ (1− FX (x)) = 0, l’Hôpital’s rule gives

lim
x→∞

x (1− FX (x)) = lim
x→∞

(
1− 2

π arctan (x)
)

1/x
= lim

x→∞

− 2
π

1
1+x2

−x−2
=

2

π
,

which is nonzero.

The necessity of the condition implies that E[|X|], and thus, E[X], does not exist.

b) Let u = 1− FX (x) and dv = dx, so that

I =

∫ ∞

0

(1− FX (x)) · 1 dx

= uv|∞0 −
∫ ∞

0

vdu = x (1− FX (x))|∞0 −
∫ ∞

0

(−1)xF ′
X (x) dx

= lim
x→∞

x (1− FX (x)) +

∫ ∞

0

xfX (x) dx

= E [X] ,

provided limx→∞ x (1− FX (x)) = 0, which is a necessary condition for the existence of the

first moment, as shown in the previous question.
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Solution to Problem 7.13:

a) From the sketch of the two dimensional integration space depicted in Figures (S-7.1) and

(S-7.2) and assuming the order of integration can be interchanged, it follows that∫ ∞

0

(1− FX (x)) dx =

∫ ∞

0

∫ ∞

x

fX (t) dtdx

=

∫ ∞

0

(∫ t

0

dx

)
fX (t) dt =

∫ ∞

0

tfX (t) dt,

and the last expression is just E [X].
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Figure S-7.1: Some function f (x, t) for illustration. Notice that fX (t) is not a function of x (and
∫∞
x fX (t) dt is not a

function of t) but, just for integration purposes, we can think of f as a general (continuous) function of both x and t.
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Figure S-7.2: Left panel shows the x, t surface over which we integrate f , whereby the outer integral is w.r.t. x and, thus,

for a fixed x (signified by the vertical lines), the inner integral over t goes from x to ∞. The right panel illustrates the same

surface but with the outer integral w.r.t. t, so that, for a fixed t (horizontal lines), the inner integral over x goes from 0 to t.

b) Similar to the previous derivation,

E [Xn] =

∫ ∞

0

tnfX (t) dt =

∫ ∞

0

(∫ t

0

nxn−1dx

)
fX (t) dt

=

∫ ∞

0

nxn−1

∫ ∞

x

fX (t) dtdx =

∫ ∞

0

nxn−1 (1− FX (x)) dx.

84



c) For x < 0, ∫ 0

−∞
FX (x) dx =

∫ ∞

0

FX (−x) dx =

∫ ∞

0

∫ −x

−∞
fX (t) dtdx

=

∫ 0

−∞

∫ −t

0

fX (t) dxdt

=

∫ 0

−∞
fX (t) (−t) dt = −

∫ 0

−∞
tfX (t) dt.

Combining this with the derivation for x > 0 used for (7.69) yields

−
∫ 0

−∞
FX (x) dx+

∫ ∞

0

(1− FX (x)) dx =

∫ 0

−∞
tfX (t) dt+

∫ ∞

0

tfX (t) dt = E [X] .

Solution to Problem 7.14:

a) We require that value of x such that fX (x) attains its maximum, i.e., where ∂
∂xfX (x) = 0.

Differentiating gives

∂

∂x
xa−1 (1− x)

b−1
= − (b− 1)xa−1 (1− x)

b−2
+ (a− 1)xa−2 (1− x)

b−1
= 0

or (b− 1)xa−1 (1− x)
b−2

= (a− 1)xa−2 (1− x)
b−1

or (b− 1)x = (a− 1) (1− x), or

mode (X) =
a− 1

a+ b− 2
.

b) With a = 3 and b = 2 we want (a+b−1)!
(a−1)!(b−1)!

∫ x

0
ta−1 (1− t)

b−1
dt = 4x3 − 3x4 = 0.5, or x =

0.614272.

c) Symmetry implies a = b, yielding V (X) = 1
4×(2a+1) = 0.22, or a = b = 2.625.

d) We have
5

8
=

a− 1

a+ b− 2
=

a− 1

a− 1 + b− 1
,

which can be simplified to 3(a − 1) = 5(b − 1). Because both, a and b are integers, they can

be expressed as (a− 1) = 5n and (b− 1) = 3n for some integer n ∈ N, so the set of all possible

combinations (a, b) can be written as

{(a, b) : a = 5n+ 1, b = 3n+ 1, n ∈ N} .

Thus, we have the approximate relation

σX (n) :=

√
ab

(a+ b+ 1) (a+ b)
2 =

1

2

√
(1 + 5n) (1 + 3n)

(3 + 8n) (1 + 4n)
2 ≈ 0.1.

Trying a few values, σX (1) = 0.148, σX (2) = 0.112, and σX (3) = 0.094, so that either n = 2

or n = 3, i.e., {a, b} = {11, 7} or (a, b) = (16, 10) are good choices. Note that we have the

exact solution of σX (n) = 0.1 with n ∈ R>0 near n = 2.58.

Solution to Problem 7.15: With u = 1
2x

2 and making use of the Γ (·) function,

E |X|p =
2√
2π

∫ ∞

0

(2u)
p/2

e−u (2u)
−1/2

du

=
2p/2√
π

∫ ∞

0

u
p+1
2 −1eudu =

2p/2√
π
Γ

(
p+ 1

2

)
,

so that

E |X|p =


1, if p = 0,√

2/π, if p = 1,

1 if p = 2,

because Γ (3/2) =
√
π/2.
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Solution to Problem 7.16:

a) With u = xp,∫ ∞

−∞
fX (x; p) dx =

p

Γ (p−1)

∫ ∞

0

e−xp

dx =
p

Γ (p−1)

1

p

∫ ∞

0

e−uu1/p−1dx = 1.

b) The cdf for x < 0 is given by

FX (x; p) =
p

2Γ (p−1)

∫ x

−∞
exp {− (−t)p} dt.

Use the substitution

u = (−t)p , t = −u1/p,
dt

du
= −1

p
u

1−p
p

so that, recalling the definition of the incomplete gamma function and the incomplete gamma

ratio from §1.5.1, the cdf FX(x) for x < 0 is

1

2Γ (p−1)

∫ ∞

(−x)p
exp {−u}u(p

−1−1)du =
1

2

(
1−

Γ(−x)p
(
p−1
)

Γ (p−1)

)
(S-7.6)

=
1

2

(
1− Γ̄(−x)p

(
p−1
))

.

Note that, as x ↑ 0, FX (x; p) ↑ 1/2, as it should, given the symmetry of the density. This

symmetry also implies that

FX(x) = 1− FX(−x),

from which FX(x) for x > 0 can be computed using (S-7.6).

Recall that, in Matlab, their “incomplete gamma function”, gammainc, computes the incom-

plete gamma ratio. So, a program for the cdf would look like that in Listing S-7.1.

c) From (7.1),

fY (y) = σ−1fX (y/σ) =
p

2σΓ (p−1)
exp

{
−
∣∣∣x
σ

∣∣∣p} ,

the Laplace is obtained for p = 1; with p = 2 and replacing σ by
√
2σN, Y ∼ N

(
0, σ2

N

)
.

d) V (Y ) = σ2V (X) = σ2E
[
X2
]
(because, from symmetry, E [X] = 0) and

σ2E
[
X2
]

=
σ2p

2Γ (p−1)

∫ ∞

−∞
x2e−|x|pdx

=
σ2p

2Γ (p−1)

[∫ 0

−∞
x2e−((−x)p)dx+

∫ ∞

0

x2e−xp

dx

]
=

σ2p

Γ (p−1)

∫ ∞

0

x2e−xp

dx =
σ2

Γ (p−1)

∫ ∞

0

u2/pe−uu1/p−1du

=
σ2Γ (3/p)

Γ (1/p)
,

where the substitution v = −x easily shows that∫ 0

−∞
x2e−((−x)p)dx =

∫ ∞

0

v2e−(vp)dv

and the substitution u = xp gives the second to last equality.

For p = 1, V (Y ) reduces to 2σ2 and, for p = 2 and σ ←
√
2σN, V (Y ) reduces to σ2

N, recalling

that Γ (3/2) = Γ (1/2) /2.
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function cdf = gedCDF(yvec,p,mu,scale,numint);

if nargin<3, mu=0; end

if nargin<4, scale=1; end

if nargin<5, numint=0; end

k=sqrt(2); % Set k to sqrt(2), and the GED with p=2

% coincides with the standard normal.

% Set k=1, and GED with p=1 coincides with the Laplace.

scale=scale*k;

zvec = (yvec-mu)./scale;

cdf=zeros(length(zvec),1);

for i=1:length(zvec)

z=zvec(i);

if numint==0

if z<=0

t = (1/2) * ( 1 - gammainc((-z)^p, 1/p) );

else

t = 1- ( (1/2) * ( 1 - gammainc(z^p, 1/p)));

end;

else

t = quadl(@geddenstandard,-35,z,1e-8,0,p);

end

cdf(i)=t;

end

function f=geddenstandard(z,p)

f = p./(2*gamma(1./p)) .* exp(-abs(z).^p);

Program Listing S-7.1: Computes the cdf of a location–scale GED distribution. The factor k can be used to make the

GED parameterization such that it coincides with the standard Laplace (k = 1) or the standard normal (k =
√
2). The

numint option allows the user to use numeric integration to check the results.
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e) From the symmetry of the GED density, it follows from (7.65) and the examples in §7.3.2 that

fY (y) = 2 · fX (x)

∣∣∣∣dxdy
∣∣∣∣ I(0,∞) (x) .

However, for practice’ sake, we once again confirm this, and write

fY (y) = fX (x)

∣∣∣∣dxdy
∣∣∣∣ I(0,∞) (x) + fX (x)

∣∣∣∣dxdy
∣∣∣∣ I(−∞,0] (x) ,

where fX is the GED density in (7.73). For the first term, solving y = |x|p with x > 0 gives

x = y1/p, and dx/dy = (1/p) y1/p−1. Solving y = |x|p with x ≤ 0 gives x = −
(
y1/p

)
and

dx/dy = − (1/p) y1/p−1. As

I(−∞,0] (x) = I(−∞,0]

(
−
(
y1/p

))
= I[0,∞)

(
y1/p

)
= I[0,∞) (y) ,

we get

fY (y) =

∣∣∣∣1py1/p−1

∣∣∣∣ p

2Γ (1/p)
exp

{
−
∣∣∣y1/p∣∣∣p} I(0,∞) (y)

+

∣∣∣∣−1

p
y1/p−1

∣∣∣∣ p

2Γ (1/p)
exp

{
−
∣∣∣−(y1/p)∣∣∣p} I(0,∞) (y)

=
1

Γ (1/p)
y1/p−1 exp {−y} I(0,∞) (y) ,

which is the gamma density with scale one and shape 1/p.

Solution to Problem 7.17:

E
[
etZ
]
=

1√
2π

∫ ∞

−∞
exp

{
−1

2
z2 + tz

}
dz =

1√
2π

∫ ∞

−∞
exp

{
−1

2

(
z2 − 2tz

)}
dz

and, by completing the square as z2 − 2tz + t2 − t2 = (t− z)
2 − t2,

E
[
etZ
]
=

1√
2π

∫ ∞

−∞
exp

{
−1

2

(
(t− z)

2 − t2
)}

dz

= exp

{
t2

2

}∫ ∞

−∞

1√
2π

exp

{
−1

2
(z − t)

2

}
dz

= exp

{
t2

2

}
,

as the last integrand is the N (t, 1) density. Because X = µ+σZ is a (location-scale) transformation

of X,

E
[
etX
]
= E

[
et(µ+σZ)

]
= exp {tµ}MZ (tσ) = exp

{
tµ+

t2σ2

2

}
.

Solution to Problem 7.18: Let

q =
2tb

(1− 2t)
.
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Then

I =
1√
2π

∫ ∞

−∞
exp

(
t (z + b)

2 − 1

2
z2
)
dz

=
1√
2π

etb
2

∫ ∞

−∞
exp

(
−1

2
(1− 2t) z2 + 2tzb

)
dz

=
1√
2π

exp
(
tb2
) ∫ ∞

−∞
exp

(
−1

2
(1− 2t)

(
z2 − 2z

2tb

(1− 2t)

))
dz

=
1√
2π

exp
(
tb2
) ∫ ∞

−∞
exp

(
−1

2
(1− 2t)

(
z2 − 2zq + q2 − q2

))
dz

=
1√
2π

exp
(
tb2
) ∫ ∞

−∞
exp

(
−1

2
(1− 2t)

(
(z − q)

2 − q2
))

dz

=
1√
2π

exp

(
tb2 +

1

2
(1− 2t) q2

)∫ ∞

−∞
exp

(
−1

2
(1− 2t)

(
(z − q)

2
))

dz

=
1√
2π

exp

(
tb2

1− 2t

)∫ ∞

−∞
exp

(
−1

2

(
z − q

1/
√
1− 2t

)2
)
dz

= exp

(
tb2

1− 2t

)
(1− 2t)

−1/2
.

Solution to Problem 7.19:

a) First notice that the density is symmetric. Make the transformation y = x2n, x = y
1
2n ,

dx = 1
2ny

1
2n−1dy to get ∫ ∞

0

2dx

(1 + x2n)
m =

∫ ∞

0

dy

n (1 + y)
m
y1−

1
2n

,

followed by the substitution z = (1 + y)
−1

, y = (1− z) z−1, dy = −z−2dz, to get

− 1

n

∫ 0

1

zmz1−
1
2n (1− z)

1
2n−1

z−2dz =

∫ 1

0

z(m− 1
2n )−1 (1− z)

1
2n−1

dz

=
1

n
B

(
m− 1

2n
,
1

2n

)
.

Thus, it must be the case that n > 0 and m > (2n)
−1

.

b)

µr =

∫ ∞

−∞
|x|r fX (x;n,m) dx = 2k

∫ ∞

0

xrdx

(1 + x2n)
m ,

which, with the substitution

z =
1

(1 + x2n)
x =

(
1− z

z

) 1
2n

=
(
z−1 − 1

) 1
2n dx = − 1

2n

(
1− z

z

) 1
2n−1

z−2dz

gives

µr =
k

n

∫ 1

0

zm
(
1− z

z

) r
2n
(
1− z

z

) 1
2n−1

z−2dz

=
k

n

∫ 1

0

z(m− r
2n− 1

2n )−1 (1− z)
r
2n+ 1

2n−1

=
k

n
B

(
m− r

2n
− 1

2n
,
r

2n
+

1

2n

)
=

Γ
(
m− r+1

2n

)
Γ
(
r+1
2n

)
Γ
(
m− 1

2n

)
Γ
(

1
2n

) ,

which exists for 2r < 2nm− 1.
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Solution to Problem 7.20: The density of X is given by

fX (x; n1, n2) =
1

B
(
n1

2 , n2

2

) (n1

n2

)n1/2 x(n1−2)/2(
1 + n1

n2
x
)(n1+n2)/2

I(0,∞) (x) .

Defining a = n1/n2, Pr (B ≤ b) is given by

Pr

(
aX

1 + aX
≤ b

)
= Pr

(
X ≤ b

a (1− b)

)
=

1

B (n1/2, n2/2)
an1/2

∫ b
a(1−b)

0

x(n1−2)/2

(1 + ax)
(n1+n2)/2

dx.

Then using the change of variable y = y (x) = ax (1 + ax)
−1

, then x = ya−1 (1− y)
−1

and dx/dy =

a−1 (1 + y)
−2

with the limits of integration y (0) = 0 and y
(

b
a(1−b)

)
= b to get, noting that

1 + y (1− y)
−1

= (1− y)
−1

,

Pr (B ≤ b) =
1

B (n1/2, n2/2)
an1/2

∫ b

0

(
y

a(1−y)

)(n1−2)/2

(
1 + ay

a(1−y)

)(n1+n2)/2

1

a (1− y)
2 dy

=
1

B (n1/2, n2/2)
a(

n1
2 −n1−2

2 −1)
∫ b

0

y
n1
2 −1 (1− y)

−n1−2
2 +

n1+n2
2 −2

dy

=
1

B (n1/2, n2/2)

∫ b

0

y
n1
2 −1 (1− y)

n2
2 −1

dy = B̄b (n1/2, n2/2) ,

so that B ∼ Beta (n1/2, n2/2).

In general, if X ∼ Beta (a, b), then

fX (x; a, b) =
Γ (a+ b)

Γ (a) Γ (b)
xa−1 (1− x)

b−1 I(0,1) (x)

and, with Y = 1−X,

fY (x; a, b) = fX (1− y; a, b) |−1| = Γ (a+ b)

Γ (a) Γ (b)
(1− y)

a−1
yb−1I(0,1) (1− y)

so that Y ∼ Beta (b, a). Thus,

1−B = 1− (n1/n2)X

1 + (n1/n2)X
=

1

1 + (n1/n2)X
∼ Beta (n2, n1) .

Solution to Problem 7.21: Calculating several derivatives of f (a) = (1− a)
−1/2

and using (7.36)

gives

f (i) (a) =
1 · 3 · · · · · (2i− 1)

2i
(1− a)

−(i+1/2)
=

Γ (i+ 1/2)√
π

(1− a)
−(i+1/2)

,

so that the Taylor series expansion of f around zero is

(1− a)
−1/2

=
∞∑
i=0

f (i) (0)

i!
ai =

1√
π

∞∑
i=0

Γ (i+ 1/2)

i!
ai

= 1 +
1

2
a+

3

8
a2 +

5

16
a3 +

35

128
a4 +

63

256
a5 + · · · .

Solution to Problem 7.22: Using (7.40), i.e., that

lim
x→∞

Φ̄ (x) =
1

x
√
2π

exp
(
−x2/2

)
,

90



we have

lim
x→∞

Φ̄ (x+ k/x)

Φ̄ (x)
=

limx→∞ Φ̄ (x+ k/x)

limx→∞ Φ̄ (x)

= lim
x→∞

x

(x+ k/x)
exp

(
− (x+ k/x)

2
/2 + x2/2

)
= lim

x→∞

x

(x+ k/x)
lim
x→∞

exp

(
−k 2x

2 + k

2x2

)
= exp

(
lim
x→∞

−k 2x
2 + k

2x2

)
= exp (−k) .

Solution to Problem 7.23: Try program S-7.2 with various values for a, b and tol, the numeric inte-

gration accuracy parameter, for example, betacomp(1e-2,8,12) and betacomp(1e-7,8,12).

function betacomp(tol,a,b,yvec)

time1=[]; time2=[]; time3=[]; numint=[]; comb=[]; intern=[];

if nargin < 4, yvec=[0.05:0.05:0.95]; end

betafunc=beta(a,b); % just evaluate it once, then pass it as a parameter

for i=1:length(yvec)

y=yvec(i); uhr=cputime;

numint=[numint quadl(@incbeta,0,y,tol,[],a,b,betafunc)];

time1=[time1 cputime-uhr];

uhr=cputime; j=a; n= b+j-1; kon=fact(n)/fact(n-j)/fact(j-1);

comb=[comb (1-binocdf(j-1,n,y)) / kon / betafunc];

time2=[time2 cputime-uhr];

uhr=cputime; intern=[intern betainc(y,a,b)];

time3=[time3 cputime-uhr];

end

subplot(3,1,1), plot(yvec,comb,’g-’); xlabel(’y’), axis([0 1 0 1])

title([’Scaled IB function for a=’,int2str(a),’ and b=’,int2str(b)]);

subplot(3,1,2), plot(yvec,time1,’r-’,yvec,time2,’g--’,yvec,time3,’b:’);

xlabel(’y’), legend(’Int’,’Comb’,’Num’,0); ylabel(’seconds’)

title([’Comp. of evaluation time of IB(’,int2str(a),’,’,int2str(b),’)’])

subplot(3,1,3), plot(yvec,comb-numint,’g-’); xlabel(’y’)

title (’Discrep. between combinatoric and numeric integration’);

function f=fact(n), if n==1, f=1; else, f=n*fact(n-1); end

function f = incbeta(x,a,b,betafunc), f=x.^(a-1).*(1-x).^(b-1)/betafunc;

Program Listing S-7.2: Evaluation of the incomplete beta function

Solution to Problem 7.24: See Listings S-7.3 and S-7.4.
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function cdfnorm(type,relative,x)

% x is vector of ordinates; type is any set of:

% 1:Polya (1945) 2:Hastings (1955) 3:Hart (1966) 4:Burr (1967)

% 5:Derenzo (1977) 6:Page (1977) 7:Moran (1980)

% if relative=1, computes relative error, otherwise absolute.

global true discrep;

if nargin<2, relative=1; end

if nargin<3, x=0.01:0.01:5; end

true=normcdf(x); lt=length(type);

if relative==1, etype=’Relative’; else, etype=’Absolute’; end

if lt==1

[ameth,app,loc]=method(x,relative,type);

subplot(2,1,1), plot(x,true,’g-’,x,app,’r--’), grid

title ([’Exact F(x) (solid) and ’,ameth,’ Approximation G(x) (dashed)’])

subplot(2,1,2), doplot(x,relative,loc,etype,ameth);

else

switch lt

case {2,3}, grow=lt; gcol=1;

case 4, grow=2; gcol=2;

case {5,6}, grow=3; gcol=2;

case {7,8}, grow=4; gcol=2;

otherwise, error(’Add more statements here’); end

for i=1:length(type)

[ameth,app,loc]=method(x,relative,type(i));

subplot(grow,gcol,i), doplot(x,relative,loc,etype,ameth);

end

end

function doplot(x,relative,loc,etype,ameth);

global true discrep;

plot(x,discrep,’r-’)

title ([’ ’,etype,’ Discrepancy for ’,ameth,’ Approx.’])

ax=axis; line([loc(2),loc(2)],[ax(3),ax(4)],’linestyle’,’:’,’color’,’b’)

line([ax(1),ax(2)],[0,0],’linestyle’,’-’,’color’,’k’)

xlabel([’Max = ’,num2str(loc(1)),’ at x = ’,num2str(loc(2))])

function loc=getloc(app,x,relative);

global true discrep;

if relative==1, discrep=(true-app)./true; else, discrep=true-app; end

ref=abs(discrep); worst=max(ref);

bool=(worst==ref); worstx=x(bool); loc=[worst,worstx];

Program Listing S-7.3: Methods of approximating the normal cdf
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function [ameth,app,loc]=method(x,relative,type);

global discrep;

switch type

case 1

ameth=’Polya (1945)’; app=0.5*(1+sqrt(1-exp(-2*x.^2/pi)));

case 2

ameth=’Hastings (1955)’;

t=(1+0.33267*x).^(-1); a1=0.4361836; a2=-0.1201676; a3=0.937298;

app=1-normpdf(x).*(a1*t + a2*t.^2 + a3*t.^3);

case 3

ameth=’Hart (1966)’;

x2=x.^2; n=1+sqrt(1+6*pi-2*pi^2); a=n / (2*pi); b=n^2 / (2*pi);

c=x*sqrt(pi/2); d=1./(x*sqrt(2*pi));

e=exp(-x2 / 2); f=sqrt(1+b*x2) ./ (1+a*x2);

curly=(c+sqrt(c.^2 +f.*e)).^(-1); app=1-d.*e.*( 1-f.*curly );

case 4

ameth=’Burr (1967)’;

a=0.644693; b=0.161984; c=4.874; k=-6.158;

gx=1-(1+(a+b*x).^c).^k; app=gx; gmx=1-(1+(a+b*(-x)).^c).^k;

app=real(0.5*(gx+1-gmx));

case 5

ameth=’Derenzo (1977)’;

xlo=x(x<=5.5); xhi=x(x>5.5); num=(83*xlo+351).*xlo + 562;

den=703./xlo + 165; applo=1-0.5*exp(-num./den);

apphi=1-1./sqrt(2*pi)./xhi .* exp(-0.5*xhi.^2 - 0.94./xhi.^2);

app=[applo;apphi];

case 6

ameth=’Page (1977)’;

a1=0.7988; a2=0.04417;

y=a1*x.*(1+a2*x.^2); e=exp(2*y); app=e./(1+e);

case 7

ameth=’Moran (1980)’;

s=0; h=sqrt(2)/3;

for n=0:12

t=n+0.5; k=exp(-t^2 / 9) / t; s=s+k*sin(h*t*x);

end

app=0.5+s/pi;

otherwise, error(’Unknown method.’), end

loc=getloc(app,x,relative);

Program Listing S-7.4: Listing S-7.3 continued
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Solutions to Chapter 8:

Joint and Conditional Random

Variables

Solution to Problem 8.1: Let ϕν and Φν denote the pdf and cdf of the Student’s t distribution with

ν degrees of freedom, respectively. With K = v−1/2 /B (ν/2, 1/2) and u = 1 + r2/ν,

E [R | R < c] =
1

Φν (c)

∫ c

−∞
rϕν(r)dr

=
K

Φν (c)

∫ c

−∞
r
(
1 + r2/ν

)−(ν+1)/2
dr =

K

Φν (c)

ν

2

∫ 1+c2/ν

∞
u−(ν+1)/2du

= − K

Φν (c)

ν

1− ν
u1−(ν+1)/2

∣∣∣∞
1+c2/ν

=
K

Φν (c)

ν

1− ν

(
1 + c2/ν

)1−(ν+1)/2

= − ϕν(c)

Φν(c)
×
[
ν + c2

ν − 1

]
,

from which it is clear that, as ν →∞, the expression approaches that based on the normal distri-

bution given in Example 8.15.

Solution to Problem 8.2:

a) The event of interest is

E = (A1 has ν1 hearts ∩ A2 has ν2 hearts)

∪ (A1 has ν2 hearts ∩ A2 has ν1 hearts) .

There are
(
13
ν1

)(
52−13
13−ν1

)
ways for A1 to get ν1 hearts, leaving

(
13−ν1

ν2

)(
52−13−(13−ν1)

13−ν2

)
ways for A2

to get ν2 hearts. We are not interested in the number of hearts that B1 and B2 possess, so

that there are simply
(

26
13,13

)
ways of distributing the remaining 26 cards among B1 and B2.

There are
(

52
13,13,13,13

)
ways in total of distributing the cards, but

(
52

13,13,13,13

)
=
(
52
13

)(
39
13

)(
26
13

)
,

and
(

26
13,13

)
=
(
26
13

)
so that defining k to be

kν1,ν2 =

(
13
ν1

)(
52−13
13−ν1

)(
13−ν1

ν2

)(
52−13−(13−ν1)

13−ν2

)(
26

13,13

)(
52

13,13,13,13

) =

(
13
ν1

)(
39

13−ν1

)(
13−ν1

ν2

)(
26+ν1

13−ν2

)(
52
13

)(
39
13

)
we see

Pr (E) =


2kν1,ν2

if ν1 ̸= ν2 and ν1 + ν2 ≤ 13

kν1,ν1 if ν1 = ν2 and ν1 + ν2 ≤ 13

0 otherwise.

b) From the previous problem, this must be given by Sν =
∑ν

ν1=0 kν1,ν−ν1 for ν even or odd.

Instead of trying to simplify Sν , we can proceed directly as follows. There are
(
13
ν

)
ways of

picking the ν hearts and, thus,
(

39
26−ν

)
ways of picking the remaining cards for A1 and A2.
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Then, there are
(

26
13,13

)
ways of distributing the 26 chosen cards among A1 and A2. From the

remaining cards, there are
(

26
13,13

)
ways of distributing them among B1 and B2, so that

Sν =

(
13
ν

)(
39

26−ν

)(
26

13,13

)(
26

13,13

)(
52

13,13,13,13

) =

(
13
ν

)(
39

26−ν

)(
26
13

)(
52
13

)(
39
13

) .

c) Pr (C | D) = Pr (CD) /Pr (D) = Pr (C) /Pr (D), but event C is exactly the question in part

(a), and D is exactly the question in part (b), so the answer is

Pr (C | D) = S−1
ν


2kν1,ν2 , if ν1 ̸= ν2 and ν1 + ν2 ≤ 13,

kν1,ν2 , if ν1 = ν2 and ν1 + ν2 ≤ 13,

0, otherwise.

Another solution is to work directly with the reduced sample space, i.e., given that between

the two people of interest, they have ν hearts. Observe that the probability that A1 gets ν1
hearts is hypergeometrically distributed, i.e.,

Pr (A1 gets ν1 hearts) =

(
ν
ν1

)(
26−ν
13−ν1

)(
26
13

) .

Thus, we also have

Pr (C | D) =

(
26

13

)−1


2

(
ν

ν1

)(
26− ν

13− ν1

)
, if ν1 ̸= ν2 and ν1 + ν2 ≤ 13,(

ν

ν1

)(
26− ν

13− ν1

)
, if ν1 = ν2 and ν1 + ν2 ≤ 13,

0, otherwise,

which is easier to evaluate numerically. For ν1 = 3 and ν2 = 2, Pr (C | D) = 78
115 ≈ 0.678.

d) Intuitively, on average the ν hearts should be equally distributed between A1 and A2, so that

E [ν1 | ν] = ν
2 . Formally,

E [ν1 | ν] =
∑ν

ν1=0 ν1 · kν1,ν−ν1∑ν
i=0 ki,ν−i

=

∑ν
ν1=0 ν1

(
13
ν1

)(
39

13−ν1

)(
13−ν1

ν−ν1

)(
26+ν1

13−(ν−ν1)

)(
13
ν

)(
39

26−ν

)(
26
13

) =
ν

2
,

where the last equality can be verified numerically for 1 ≤ ν ≤ 13 or, possibly, proven by

induction. Use of the hypergeometric distribution in part (c) simplifies things considerably, so

that, directly,

E [ν1 | ν] =
13ν

26
=

ν

2
, V (ν1 | ν) =

13ν

26
· 26− ν

26
· 26− 13

26− 1
=

ν (26− ν)

100
.

Solution to Problem 8.3: From Example 8.17, Pr (X1 < aX2) =
aλ1

aλ1+λ2
, so that

Pr (X1 < aX2 | X1 < bX2) =
Pr (X1 < aX2)

Pr (X1 < bX2)
=

a

b

bλ1 + λ2

aλ1 + λ2
.

As b gets large, irrespective of the λi, it will eventually be “almost certain” that X1 < bX2, so

that the conditional probability reduces to just Pr(X1 < aX2). Writing the above conditional

probability as
aλ1 + aλ2/b

aλ1 + λ2

and taking the limit as b→∞ immediately confirms this.
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Solution to Problem 8.4: The density is just

fX,Y (x, y) = I(0,1) (x) I(0,1) (y) .

Note that the “solution”

Pr (Z ≤ z) = Pr
(
Y ≤ z

X

)
=

∫ 1

0

∫ z/x

0

dydx = z

∫ 1

0

dx

x
=∞

is wrong. The reason is that, for X ≤ z, Pr (Y ≤ z/X) = 1. By splitting up the region into two

pieces, we obtain

FZ (z) =

∫ z

0

∫ 1

0

dydx+

∫ 1

z

∫ z/x

0

dydx = (z − z ln z) I(0,1) (z)

and differentiating, fZ (z) = − ln (z) I(0,1) (z).

Solution to Problem 8.5:

a) From the discussion in §4.5 relating Poisson and exponential r.v.s, Pr
(
S1
1 < S2

1

)
is the same

as Pr (X1 < X2) for Xi
ind∼ Exp (λi), i = 1, 2. From Example 8.17, this is given by λ1

λ1+λ2
.

b) This means that the first event must be from N1, which occurs with probability λ1

λ1+λ2
and

that the second event also must be from N1, which also occurs with probability λ1

λ1+λ2
from

the memoryless property of the exponential, so that

Pr
(
S1
n < S2

1

)
=

(
λ1

λ1 + λ2

)n

.

c) Similar to the previous part, the next event occurs from process N1 with probability λ1

λ1+λ2
,

and from N2 with probability 1− λ1

λ1+λ2
= λ2

λ1+λ2
.

d) At any given time, when the next event occurs, it is from Ni with probability λi

λ1+λ2
, i = 1, 2.

Thus, if we think of the 2 processes as “competing” in the sense that, at each occurrence, Ni

“wins” with probability λi

λ1+λ2
, i = 1, 2, we can use (3.18) so that, with p = λ1

λ1+λ2
,

Pr
(
S1
n < S2

m

)
=

n+m−1∑
k=n

(
n+m− 1

k

)
pk (1− p)

n+m−1−k
.

Solution to Problem 8.6:

a) With Y = y known and assuming that we draw without replacement (as is appropriate for a

lottery), X follows the hypergeometric distribution

fX|Y (x | y) =
(
y
x

)(
N−y
n−x

)(
N
n

) I{0,1,...,min(n,y)} (x)

with

E [X | Y = y] =
ny

N
. (S-8.1)

b) From the definition,

fX,Y (x, y) = fY (y) fX|Y (x | y)

=

(
N

y

)
θy (1− θ)

N−y

(
y
x

)(
N−y
n−x

)(
N
n

) I{0,1,...,n} (y) I{0,1,...,min(n,y)} (x)

and, simplifying the combinatorics and noting the explicit dependence on n and N ,

fX,Y (x, y | n,N) =

(
n

x

)(
N − n

y − x

)
θy (1− θ)

N−y I{0,1,...,n} (y) I{0,1,...,min(n,y)} (x) .
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c) Multiplying the left hand side by 1 = θxθ−x (1− θ)
n−x

(1− θ)
−(n−x)

yields

θx (1− θ)
n−x

N∑
y=0

(
N − n

y − x

)
θy−x (1− θ)

N−n−(y−x)
,

with the sum only being valid from y = x to y = N−n+x so that the combinatoric is defined.

(This makes sense, observing that y < x would imply having drawn more winning tickets than

issued, and N − n < y − x ⇔ N − y < n − x would imply having drawn more losing tickets

than issued). Restricting the sum to this range, and defining z = y − x, we have

N−n+x∑
y=x

(
N − n

y − x

)
θy−x (1− θ)

N−n−(y−x)
=

N−n∑
z=0

(
N − n

z

)
θz (1− θ)

(N−n)−z
,

with the right hand side being the sum of all the binomial coefficients, which is one, as was to

be shown.

d) fY |X (y | x) = fX,Y (x, y) / fX (x), where

fX (x) =
N∑

y=0

fX,Y (x, y)

=

N∑
y=0

(
n

x

)(
N − n

y − x

)
θy (1− θ)

N−y I{0,1,...,n} (y) I{0,1,...,min(n,y)} (x)

=

(
n

x

)
θx (1− θ)

n−x I{0,1,...,n} (x) (S-8.2)

and

fY |X (y | x) =
(
N − n

y − x

)
θy−x (1− θ)

N−n−(y−x) I{x,...,N−n+x} (y) .

e) The density of fY |X is a “shifted” binomial, i.e., it starts at x instead of 0. We might have

guessed at the answer by assuming that the binomial form still holds, but using the obvious

facts that y ≥ x and N − y ≥ n− x.

f) Defining z = y − x and using the mean of the binomial distribution,

E [Y | X] =

N−n+x∑
y=x

y

(
N − n

y − x

)
θy−x (1− θ)

N−n−(y−x)

=

N−n∑
z=0

(z + x)

(
N − n

z

)
θz (1− θ)

N−n−z

= x+ (N − n) θ. (S-8.3)

For n = N we observe the whole sample and x, the number of observed successes, must

be y. This agrees with E [Y | X,N = n] = x. For n = 0, x is naturally also zero, so that

E [Y | X] = Nθ = E [Y ], the unconditional expectation of Y .

g)

i) X is binomially distributed and, hence, E [X] = nθ.

ii) As Y is unconditionally binomially distributed,

Nθ = E [Y ] = E [E [Y | X]] = E [x] + (N − n) θ

so that

E [X] = Nθ − (N − n) θ = nθ.

iii) E [X] = E [E [X | Y ]] = E [nY/N ] = nNθ/N = nθ.
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Solution to Problem 8.7:

a) As floors are equally likely to be chosen,

E [I1 | X = x] = · · · = E [IN | X = x] ,

so that taking iterative expectations yields

E [Y ] = EX

[
E Y |X [Y | X = x]

]
= EX

[
N∑
i=1

E [Ii | X = x]

]
= NEX [E [I1 | X = x]] .

As

E [I1 | X = x] = Pr
(
at least one person gets off on 1st floor

)
= 1− Pr

(
no one gets off on 1st floor

)
= 1−

(
N − 1

N

)x

,

it follows that

E [Y ] = NEX

[
1−

(
N − 1

N

)x]
= N

∞∑
x=0

(
1−

(
N − 1

N

)x)
e−λλx

x!

= N

(
1− e−λ

∞∑
x=0

(
N − 1

N

)x
λx

x!

)
.

But directly from the Poisson distribution,

∞∑
x=0

(
λ
(
N−1
N

))x
x!

= 1/e−λ(N−1
N ) = eλe−λ/N

so that E [Y ] = N
(
1− e−λ/N

)
.

b) With only one floor, E [Y ] reduces to the weighted probability 0×Pr (X = 0)+1×Pr (X ≥ 1) =

1−Pr (X = 0) = 1−e−λλ0/0! = 1−e−λ which approaches one as λ increases, i.e., Pr (X = 0)→
0.

c) Because people choose floors independently and each floor is equally likely, as the number of

floors gets large, the probability that two or more people pick the same floor will get smaller,

so that lim
N→∞

E [Y ] = E [X] = λ.

d) The series expansion of N
(
1− e−λ/N

)
is

N

(
1−

(
1− λ

N
+

λ2

2N2
− λ3

3!N3
+ · · ·

))
= λ− λ2

2N
+

λ3

3!N2
− · · ·

which is equal to λ for large N . Alternatively, from L´Hospitals rule with the substitution

M = 1/N gives

lim
M→0

(
1− e−λM

)
M

= lim
M→0

λe−λM

1
= λ.

Solution to Problem 8.8: For density 2y
(
2− x2 − y

)
I(0,1) (x) I(0,1) (y) as shown in Figure S-8.1,

fX (x) =

∫ ∞

−∞
fX,Y (x, y) dy = 2

∫ 1

0

y
(
2− x2 − y

)
dy =

(
4

3
− x2

)
I(0,1) (x) ,

fY (y) =

∫ ∞

−∞
fX,Y (x, y) dx = 2

∫ 1

0

y
(
2− x2 − y

)
dx =

2

3
y (5− 3y) I(0,1) (y)
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Figure S-8.1: Density 2y

(
2− x2 − y

)
I(0,1) (x) I(0,1) (y)

and

fX|Y (x | y) = 3
2− x2 − y

5− 3y
I(0,1) (x) I(0,1) (y) ,

fY |X (y | x) = 6y
2− x2 − y

4− 3x2
I(0,1) (y) I(0,1) (x) .

These are shown in Figures S-8.2 and S-8.3.
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Figure S-8.2: Marginal densities

Also,

fX (x) =

∫ ∞

−∞
fX|Y (x | y) fY (y) dy

=

∫ 1

0

3
2− x2 − y

5− 3y

2

3
y (5− 3y) dy =

(
4

3
− x2

)
I(0,1) (x)

and

fX|Y (x | y) =
fX (x) fY |X (y | x)∫∞

−∞ fY |X (y | x) dFX (x)
=

(
4
3 − x2

)
6y 2−x2−y

4−3x2∫ 1

0

(
4
3 − x2

)
6y 2−x2−y

4−3x2 dx

= 3
2− x2 − y

5− 3y
I(0,1) (x) I(0,1) (y) .
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Figure S-8.3: Conditional densities; on left, y = 0.2 (solid), y = 0.4 (dotted), y = 0.6 (dashdot), y = 0.8 (dashed); on

right x = 0.2 (solid), x = 0.4 (dotted), x = 0.6 (dashdot), x = 0.8 (dashed)

Solution to Problem 8.9: With u = x/y,

fY (y) = ce−y

∫ 1

0

(uy)
a−1

(y (1− u))
b−1

y du = ce−yya+b−1B (a, b) I(0,∞) (y) .

From the kernel e−yya+b−1, we see that Y ∼ Gam(a+ b, 1) and c is derived from

1 =

∫ ∞

0

fY (y) dy = c
Γ (a) Γ (b)

Γ (a+ b)

∫ ∞

0

e−yya+b−1dy = cΓ (a) Γ (b) .

For X, with u = y − x, y = u+ x,

fX (x) =
xa−1

Γ (a) Γ (b)

∫ ∞

x

(y − x)
b−1

e−ydy =
xa−1e−x

Γ (a) Γ (b)

∫ ∞

0

ub−1e−udu

=
1

Γ (a)
xa−1e−xI(0,∞) (x) ,

i.e., X ∼ Gam(a, 1).

The conditionals simplify to

fX|Y (x | y) =
1

B (a, b)
xa−1 (y − x)

b−1
y1−a−bI(0,y) (x) ,

fY |X (y | x) =
1

Γ (b)
(y − x)

b−1
ex−yI(x,∞) (y) .

Note the special cases (X | Y = 1) ∼ Beta (a, b) and (Y | X = 0) ∼ Gam(b, 1).

Solution to Problem 8.10: Observe that (X | N = n) ∼ Bin (n, p) so that, from (8.16) with q = 1−p,

Pr (X = x) =
∞∑

n=x

Pr (X = x | N = n) Pr (N = n)

=
∞∑

n=x

(
n

x

)
px (1− p)

n−x e−λλn

n!

=
pxe−λ

x!

∞∑
n=x

λn (1− p)
n−x

(n− x)!

=
pxe−λ

x!

(
λx + λx+1q +

1

2
λx+2q2 + · · ·

)
=

pxe−λ

x!
λx

(
1 + λq +

1

2
λ2q2 + · · ·

)
=

pxe−λ

x!
λxeλq

=
(λp)

x
e−(λp)

x!
I{0,1,... } (x) .
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Thus, unconditionally, X ∼ Poi (λp). This also confirms E [X] and V (X) computed in Example

8.14.

Solution to Problem 8.11:

a) fY (y) = e−y
∫∞
0

e−x/yy−1dx = e−yI(0,∞) (y).

b) fX|Y (x | y) = fX,Y (x,y)
fY (y) = e−x/yy−1I(0,∞) (x) for y > 0.

c) Pr (X > Y ) =
∫∞
0

∫∞
y

fX,Y (x, y) dxdy =
∫∞
0

∫ x

0
fX,Y (x, y) dydx and, using the former,∫ ∞

0

∫ ∞

y

e−x/ye−yy−1dxdy =

∫ ∞

0

e−y

[∫ ∞

y

e−x/yy−1dx

]
dy.

With a = 1/y, the inner integral is
∫∞
y

ae−axdx = 1− F (y) = e−ay = e−1, so that

Pr (X > Y ) =

∫ ∞

0

e−ye−1dy = e−1.

Solution to Problem 8.12: Based on density (8.21) and covariance expression (5.24),

Cov (X,Y ) =

∫ ∞

0

∫ ∞

0

xyf(x, y; θ) dx dy − E [X]E [Y ]

=

∫ ∞

0

∫ ∞

0

xy ((1 + θx) (1 + θy)− θ) exp (−x− y − θxy) dx dy − 1

=

∫ ∞

0

ye−y

[∫ ∞

0

x ((1 + θx) (1 + θy)− θ) e−x(1+θy)dx

]
dy − 1

=

∫ ∞

0

ye−yA (y) dy − 1,

where A (y) is the inner integral, given by

A (y) =

∫ ∞

0

x ((1 + θx) (1 + θy)− θ) e−x(yθ+1) dx

= (1 + θy)

[∫ ∞

0

xe−x(1+θy) dx+ θ

∫ ∞

0

x2e−x(1+θy) dx

]
− θ

∫ ∞

0

xe−x(1+θy) dx

= (1 + θy)

(
1

(1 + θy)
2 +

2θ

(1 + θy)
3

)
− θ

(1 + θy)
2

=
1

1 + θy
+

θ

(1 + θy)
2

having used the elementary calculations∫ ∞

0

xe−x(1+yθ) dx = (1 + θy)
−2

and

∫ ∞

0

x2e−x(1+θy) dx = 2 (1 + θy)
−3

.

Solution to Problem 8.13:

a) With Gm := E
[
N2

m

]
= E

[
E
[
N2

m | Nm−1

]]
from the law of the iterated expectation, define

X := N2
m | (Nm−1 = n) and let Y the (n+ 1)

st
trial. Then, similar to the calculation and

argumentation in Example 8.13,

E [X] = (1− p) · E [X | Y = 0] + p · E [X | Y = 1] (S-8.4)

= (1− p) · E
[
(Nm + n+ 1)

2
]
+ p · (n+ 1)

2
.
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Observe that n is a constant (and not a random variable), so that expanding the square, we

can write

E [X] = (1− p)E
[
N2

m

]
+ 2 (1− p)nE [Nm] + 2 (1− p)E [Nm]

+ (1− p) (n+ 1)
2
+ p · (n+ 1)

2

= (1− p)Gm + 2 (1− p) (n+ 1)E [Nm] + (n+ 1)
2
.

Now taking expectations of both sides w.r.t. Nm−1 (i.e., n) and noting that Gm and E [Nm]

are constants gives

Gm = (1− p)Gm + 2 (1− p)E [Nm]E [(Nm−1 + 1)] + E
[
(Nm−1 + 1)

2
]

or, simplifying and letting Em := E [Nm],

pGm = 2 (1− p)Em (1 + Em−1) +Gm−1 + 2Em−1 + 1.

With m = 1, N1 ∼ Geo (p) and, from (4.51),

G1 = E
[
N2

1

]
=

1− p

p2
+

(
1

p

)2

=
2− p

p2
.

Then, using the recursion and simplifying, we get

G1 = p−2 (−p+ 2) ,

G2 = p−4
(
−p3 − p2 + 4p+ 2

)
,

G3 = p−6
(
−p5 − p4 − p3 + 6p2 + 4p+ 2

)
,

G4 = p−8
(
−p7 − p6 − p5 − p4 + 8p3 + 6p2 + 4p+ 2

)
for which a general pattern seems to be given by

Gm = p−2m

(
−

2m−1∑
i=m

pi + 2
m−1∑
i=0

(i+ 1) pi

)

=
p2m − (3 + 2m) pm − p2m+1 + (1 + 2m) pm+1 + 2

(1− p)
2
p2m

,

which is (8.51). The expression V (Nm) = Gm − E2
m then reduces to (8.49), i.e.,

V (Nm) =
1− (1 + 2m) (1− p) pm − p2m+1

(1− p)
2
p2m

.

Substituting the identity Em−1 = pEm − 1 from (8.32) into (8.50) gives

Gm =
1

p
Gm−1 + 2Em −

1

p
+ 2E2

m (1− p) =
1

p
Gm−1 +

2

1− p

(
p−2m − p−m

)
− 1

p
.

As G0 is zero, recursively substituting and simplifying yields

Gm =
m∑
i=1

(
1

p

)m−i(
2

1− p

)(
p−2i − p−i

)
−

m∑
i=1

(
1

p

)i

=

(
2

1− p

)(
p−2m − p−m

1− p
−mp−m

)
− p−m − 1

1− p
,

which the reader can verify is equivalent to (8.51).
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b) With Mm := E
[
etNm

]
= E

[
E
[
etNm | Nm−1

]]
and X = etNm | (Nm−1 = n), as in (S-8.4),

E [X] = (1− p) · E [exp{t(Nm + n+ 1)}] + p · exp{t(n+ 1)}

or E [X] = (1− p) etnetMm + petnet. Taking expectations w.r.t. Nm−1 gives, with q = 1− p,

Mm = q etMmMm−1 + p etMm−1 or Mm =
p etMm−1

1− q etMm−1
.

Solution to Problem 8.14: After placing the first cut, you are left with a line of unit length. Denote

the position of the second cut, i.e., its distance from the left endpoint of the line, by X, and note

that X ∼ Unif(0, 1). The position of the red dot, say Y , has a uniform distribution on the unit

interval as well, independently of X.

Define a random variable Z as the length of the piece that contains the dot. We can write

Z = XI(X>Y ) + (1−X)I(X<Y )

= XI(X>Y ) + (1−X)I(1−X > 1−Y ).

Taking expectations,

E[Z] = E[X | X > Y ] Pr(X > Y ) + E[1−X | 1−X > 1− Y ] Pr(1−X > 1− Y ).

As both 1 − X and 1 − Y have uniform distributions, the two terms on the right hand side are

equal, and using Pr(X > Y ) = 1/2, we have

E[Z] = E[X | X > Y ] =

∫ 1

0

xfX|X>Y (x) dx.

Now, observe that, in general,

FX|X>Y (t) =
Pr(X < t ∧X > Y )

Pr(X > Y )
=

∫ t

−∞
∫ x

−∞ fX,Y (x, y) dy dx∫∞
−∞

∫ x

−∞ fX,Y (x, y) dy dx
=:

I(t)

I(∞)
.

Then, similar to the derivation of (8.48),

I(t) =
1

2
[FX(t)]2,

or

FX|X>Y (t) =
I(t)

I(∞)
= [FX(t)]2,

so that

fX|X>Y (t) =
d

dt
FX|X>Y (t) = 2FX(t)fX(t).

For the case at hand,

fX|X>Y (t) = 2t,

and thus

E[Z] =

∫ 1

0

xfX|X>Y (x) dx =

∫ 1

0

2x2dx =

[
2

3
x3

]1
0

=
2

3
.

This result is easily confirmed by simulation by using the following Matlab code:

x=rand(10000,1); y=rand(10000,1); z=(y<x).*x + (y>x).*(1-x); mean(z)
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Solutions to Chapter 9:

Multivariate Transformations

Solution to Problem 9.1: This is a special case of the derivation in Example 9.11 with n = 1. Let

r = x/ (x+ y) and s = x+ y, so that x = rs and y = s (1− r). Then

J =

(
∂x/∂r ∂x/∂s

∂y/∂r ∂y/∂s

)
=

(
s r

−s 1− r

)
, detJ = s

and

fR,S (r, s) = |s| fX,Y (rs, s(1− r)) and fR (r) =

∫ ∞

−∞
|s| fX,Y (rs, s(1− r)) ds.

a) For X,Y
iid∼ Gam(a, b),

fX,Y (x, y) =
ba

Γ (a)

ba

Γ (a)
xa−1ya−1 exp (−bx− by) I(0,∞) (x) I(0,∞) (y)

and, temporarily omitting the indicator functions,

fR (r) =

∫ ∞

−∞
|s| fX,Y (rs, s(1− r)) ds

=
ba

Γ (a)

ba

Γ (a)

∫ ∞

0

s (rs)
a−1

(s(1− r))
a−1

exp (−b (rs)− b (s(1− r))) ds

=
ba

Γ (a)

ba

Γ (a)
ra−1 (1− r)

a−1
∫ ∞

0

s2a−1 exp (−bs) ds

=
Γ (2a)

Γ (a) Γ (a)
ra−1 (1− r)

a−1
,

where ∫ ∞

0

s2a−1 exp (−bs) ds = Γ (2a)

b2a
,

which follows directly from the gamma density. Regarding the indicator functions, note that

I(0,∞) (rs) I(0,∞) (s(1− r)) implies that r and 1 − r have the same sign, which implies that r

lies between 0 and 1. Thus

fR (r) =
Γ (2a)

Γ (a) Γ (a)
ra−1 (1− r)

a−1 I(0,1) (r) ,

i.e., R ∼ Beta (a, a), as was found in Example 9.11.

b) For X,Y
iid∼ N(0, 1), let k = 2r2 + 1− 2r and u = ks2/2 so that

fR (r) =
1

2π

∫ ∞

−∞
|s| exp

(
−1

2

(
(rs)

2
+ (s(1− r))

2
))

ds

=
1

π

∫ ∞

0

s exp

(
−k

2
s2
)
ds

=
1

π (2r2 − 2r + 1)
=

1

π

1

2

1

1 +
(

r−1/2
1/2

)2 ,
105



i.e., R ∼ Cau (1/2, 1/2), a location-scale Cauchy random variable.

Solution to Problem 9.2:

a) Observe that if w1 were 0 and w2 were 1, we would have a special case of Example 9.11.

b) With

fX1,X2 (x1, x2) = fX1 (x1) fX2 (x2)

=
1

2π
x
− 1

2
1 x

− 1
2

2 e−
1
2 (x1+x2)I(0,∞) (x1) I(0,∞) (x2) ,

define

y1 =
w1x1 + w2x2

x1 + x2
and y2 = x1 + x2,

which yields

x2 = y2
y1 − w1

w2 − w1
and x1 = y2

w2 − y1
w2 − w1

,

so that

detJ =

∣∣∣∣∣∣∣∣∣
∂x1

∂y1

∂x2

∂y1
∂x1

∂y2

∂x2

∂y2

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
− y2
w2 − w1

y2
w2 − w1

w2 − y1
w2 − w1

y1 − w1

w2 − w1

∣∣∣∣∣∣∣∣∣ =
y2

w1 − w2
.

As w2 > w1 and y2 > 0, taking absolute values yields

∣∣∣∣ y2
w1 − w2

∣∣∣∣ = y2
w2 − w1

.

Thus, without the indicator functions, fY1,Y2 (y1, y2) is

|detJ| · fX1,X2 (x1, x2)

=
y2

w2 − w1
· 1

2π
(w2 − w1) (y1 − w1)

−1/2
(w2 − y1)

−1/2
y
−1/2
2 y

−1/2
2 e−y2/2

=
1

π
(y1 − w1)

−1/2
(w2 − y1)

−1/2 · 1
2
e−y2/2.

For the indicator functions, using the fact that, by assumption, w2−w1 > 0 and, by construc-
tion, y2 = x1 + x2 is positive,

I(0,∞)

(
y2

w2 − y1
w2 − w1

)
I(0,∞)

(
y2

y1 − w1

w2 − w1

)
= I(0,∞) (w2 − y1) I(0,∞) (y1 − w1) I(0,∞) (y2) ,

which reduces to

I(0,w2) (y1) I(w1,∞) (y1) I(0,∞) (y2) = I(w1,w2) (y1) I(0,∞) (y2)

because, also by assumption, w1 > 0, w2 > 0 and, by construction, y1 > 0. That is,

fY1,Y2 (y1, y2) =
1

π
(y1 − w1)

−1/2
(w2 − y1)

−1/2 I(w1,w2) (y1)
1

2
e−y2/2 I(0,∞) (y2) .

The indicator functions could also be obtained with less “formality”. From its definition, Y2

is clearly positive. For Y1, taking the extreme case of X1 = 0 or X2 = ∞ (i.e., X1/X2 → 0),

which yields Y1 = w2, while X2 = 0 or X1 = ∞ (i.e., X2/X1 → 0) yields Y1 = w1. That Y1

cannot exceed w2 is seen by noting that Y1 > w2 would imply w1X1 +w2X2 > w2X1 +w2X2,

which is impossible, given that w1 < w2 and X1 > 0. Similar reasoning shows that Y1 > w1.

Thus, we obtain I(w1,w2) (y1).

Because of the product representation, Y1 and Y2 are independent. Also, we recognize the

latter density as a χ2 with 2 degrees of freedom, as was expected from the results in Example

9.11 and the relation between χ2 and gamma random variables.
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c) Using the suggested substitution, y1 = (w2 − w1)u + w1, dy1 = (w2 − w1) du, y1 = w1 ⇐⇒
u = 0 and y1 = w2 ⇐⇒ u = 1 and, thus,

1

π

∫ w2

w1

(y1 − w1)
−1/2

(w2 − y1)
−1/2

dy1

=
1

π

∫ 1

0

(1− u)
−1/2

(w2 − w1)
−1/2

u−1/2 (w2 − w1)
−1/2 · (w2 − w1) du

=
1

π
Beta

(
1

2
,
1

2

)
= 1.

Solution to Problem 9.3: The inverse transformation is

X1 = Y1,

X2 = Y2 − Y1,

X3 = Y3 − Y2,

...

Xn = Yn − Yn−1,

with inverse Jacobian

J−1 =



∂y1
∂x1

∂y2
∂x1

· · · ∂yn
∂x1

∂y1
∂x2

∂y2
∂x2

· · · ∂yn
∂x2

...
...

. . .

∂y1
∂xn

∂y2
∂xn

· · · ∂yn
∂xn


=


1 1 1 · · · 1

0 1 1 · · · 1

0 0 1 · · · 1
...

...
...

. . .

0 0 0 · · · 1



and det (J) = 1, so that fY (y) is

fX (x)

= λne−λ(y1)e−λ(y2−y1) · · · e−λ(s−yn−1)I(0,∞) (y1) I(0,∞) (y2 − y1) · · · I(0,∞) (s− yn−1)

= λne−λsI(0,∞) (y1) I(0,∞) (y2 − y1) · · · I(0,∞) (s− yn−1) .

Integrating out Yn−1, Yn−2, . . . , Y1, we obtain

fS (s) = λne−λs

∫ s

0

∫ yn−1

0

· · ·
∫ y5

0

∫ y4

0

∫ y3

0

∫ y2

0

dy1 dy2dy3dy4 · · · dyn−2dyn−1I(0,∞) (s)

= λne−λs

∫ s

0

∫ yn−1

0

· · ·
∫ y5

0

∫ y4

0

∫ y3

0

y2dy2 dy3dy4 · · · dyn−2dyn−1I(0,∞) (s)

=
1

2
λne−λs

∫ s

0

∫ yn−1

0

· · ·
∫ y5

0

∫ y4

0

y23dy3 dy4 · · · dyn−2dyn−1I(0,∞) (s)

=
1

2

1

3
λne−λs

∫ s

0

∫ yn−1

0

· · ·
∫ y5

0

y34 dy4 · · · dyn−2dyn−1I(0,∞) (s)

...

=
λn

(n− 1)!
e−λssn−1I(0,∞) (s) .
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Solution to Problem 9.4:

a) fY1,Y2,Y3 (y1, y2, y3) = |J| fX1,X2,X3 (x1, x2, x3), where

J−1 =



∂g1
∂x1

∂g2
∂x1

∂g3
∂x1

∂g1
∂x2

∂g2
∂x2

∂g3
∂x2

∂g1
∂x3

∂g2
∂x3

∂g3
∂x3


:=

[
∂gi
∂xj

]
i,j=1,2,3

=



x2 + x3

s2
x3

s2
1

−x1

s2
x3

s2
1

−x1

s2
−x1 + x2

s2
1


and

g1 =
x1

s
, g2 =

x1 + x2

s
and g3 = s,

where s = x1 + x2 + x3. A little work shows

∣∣detJ−1
∣∣ = (x1 + x2 + x3)

2

s4
= s−2.

Rewriting in terms of the yi,

x1 = y1y3, x2 = y3 (y2 − y1) and x3 = y3 (1− y2)

so that

|detJ| fX1,X2,X3 (x1, x2, x3) = s2e−(y3(1−y2)+y3(y2−y1)+y1y3)

= y23e
−y3I(0,∞) (y3) , 0 < y1 < y2 < 1,

where the ranges follow because Xi > 0, i = 1, 2, 3.

b) From Example 9.11,

X2 +X3 ∼ Gam(r = 2, λ = 1) , independent of X1 ∼ Gam(r = 1, λ = 1)

and

Y1 =
X1

X1 + (X2 +X3)
∼ Beta (1, 2) .

Similarly, Y2 ∼ Beta (2, 1) and Y3 ∼ Gam(r = 3, λ = 1). Alternatively,

fY1 (y1) =

∫ ∞

0

∫ 1

y1

y23 e
−y3dy2dy3 = 2 (1− y1) I(0,1) (y1)

which is the Beta (1, 2) pdf. The integral
∫∞
0

y2 e−ydy can be evaluated either by integration

by parts, i.e.,
∫
udv = uv −

∫
vdu with u = y2 and dv = e−ydy, or as follows. Notice that

the integral is precisely E
[
Y 2
]
= µ′

2, the second raw moment, with Y ∼ Exp (1). Because, in

general, µ′
2 = µ2 + σ2, it follows that µ′

2 = 12 +1 = 2, recalling that the mean and variance of

an exponential distribution.

Similarly,

fY2 (y2) =

∫ ∞

0

∫ y2

0

y23 e
−y3dy1dy3 = 2y2I(0,1) (y2)

which is the Beta (2, 1) pdf. Finally,

fY3 (y3) =

∫ 1

0

∫ y2

0

y23 e
−y3dy1dy2 =

1

2
y23 e

−y3I(0,∞) (y3)

which we recognize as the Gam (r = 3, λ = 1) pdf.
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c)

fY1,Y2 (y1, y2) =

∫ ∞

0

y23e
−y3dy3 = 2 0 ≤ y1 ≤ y2 ≤ 1,

which is a triangle with corners (0, 0), (0, 1) and (1, 1), with area 1
2 . Clearly,

fY1,Y2,Y3 (y1, y2, y3) = fY1,Y2 (y1, y2) · fY3 (y3)

so that they are independent.

d) fY1|Y2
(y1 | y2) =

fY1,Y2 (y1, y2)

fY2 (y2)
= y−1

2 I(0,1) (y2) I(0,y2) (y1), which is uniform over the interval

0 < y1 < y2.

Solution to Problem 9.5:

a) With W = X, the bivariate transformation {X,Y } → {W,Z} yields X = W , Y = Z −W and

|J | = 1, so that

fW,Z (w, z) = fX,Y (x, y) = λ2e−λ(x+y) = λ2e−λzI(0,z) (w) I(0,∞) (z) .

Thus, fZ (z) = fX+Y (z) =
∫ z

0
fW,Z (w, z) dw = zλ2e−λzI(0,∞) (z), or the gamma density with

shape 2 and scale λ−1.

b)

fX|Z=z (x | z) = fW |Z=z (w | z) =
fW,Z (w, z)

fZ (z)
= z−1I(0,z) (x) .

c) From the previous question,

Pr

(
Z

3
< X <

Z

2
| Z = z

)
=

∫ z/2

z/3

fX|Z=z (x | z) dx =
1

6
.

d) Using the given formula,

fD (d) =

∫ ∞

−∞
fX (d+ y) fY (y) dy

= λ2

∫ ∞

−∞
e−λ(d+y)e−λyI(0,∞) (d+ y) I(0,∞) (y) dy,

but

I(0,∞) (d+ y) I(0,∞) (y)⇒ −d < y, y > 0⇒
{

0 < y, for d > 0,

−d < y, for d < 0,

so that

fD (d) = I(−∞,0) (d)

∫ ∞

−d

λ2e−λ(d+y)e−λydy + I(0,∞) (d)

∫ ∞

0

λ2e−λ(d+y)e−λydy

=
1

2
λeλdI(−∞,0) (d) +

1

2
λe−λdI(0,∞) (d) =

1

2
λe−λ|d|,

similar to Example 9.5.

e) As D ∼ Lap (λ), the density of W = |D| should be just twice the density of D and with

support the positive real line instead of the whole real line. That is, W ∼ Exp (λ). More

formally, the cdf of W is given by

FW (w) = Pr (W ≤ w) = Pr (−w ≤ D ≤ w) = FD (w)− FD (−w) ,

and differentiating,

fW (w) = fD (w) + fD (−w) = 1

2
λe−λ|w| +

1

2
λe−λ|−w|

= λe−λwI(0,∞) (w)

with expected value λ−1.

109



f) Let X(1) = min (X,Y ), X(2) = max (X,Y ) and R = X(2)−X(1) denote the range of X and Y .

Then fR|X(1)=a (r | a) = fR,X(1)
(r, a) / fX(1)

(a) with the joint density fR,X(1)
(r, a) obtained

from the bivariate transformation g1 = x(1), g2 = x(2) − x(1), detJ =
∣∣ 1 0
−1 1

∣∣ = 1 so that

fR,X(1)
(r, a) = fX(1),X(2)

(a, a+ r) = 2!λe−λaλe−λ(a+r) and, differentiating (??), fX(1)
(a) =

n [1− FX (a)]
n−1

fX (a) with n = 2 or

fR|X(1)=a (r | a) =
fR,X(1)

(r, a)

fX(1)
(a)

=
2λe−λaλe−λ(a+r)

2λe−λae−λa
= λe−λrI(0,∞) (r) .

Solution to Problem 9.6:

a) Let n = 2, so that X2 = g−1
2 (Y) = Y2 and X1 = g−1

1 (Y) = ±
√
Y1 − Y 2

2 . Splitting this into

two regions,

fY (y) = |detJ1| fX (x1, x2) I(−∞,0) (x1) + |detJ2| fX (x1, x2) I(0,−∞) (x1) ,

where

J1 =

[
∂x1/∂y1 ∂x1/∂y2
∂x2/∂y1 ∂x2/∂y2

]
=

[
−
(
y1 − y22

)−1/2
/2 y2

(
y1 − y22

)−1/2

0 1

]

and similarly for J2, and, in both cases, |Ji| =
(
y1 − y22

)−1/2
/2. Thus,

fY (y) =
1

2

(
y1 − y22

)−1/2 1√
2π

e−
1
2 (y1−y2

2) 1√
2π

e−
1
2y

2
2 + same

or

fY (y) =
(
y1 − y22

)−1/2 1

2π
e−

1
2y1I(y2

2 ,∞) (y1) ,

where the indicator function follows from

Y1 = X2
1 +X2

2 and 0 ≤ X2
2 ≤ X2

1 +X2
2

or 0 ≤ Y 2
2 ≤ Y1. This also implies −

√
Y1 ≤ Y2 ≤

√
Y1, from which we have

fY1 (y1) =

∫ √
y1

−√
y1

fY (y) dy2 =
1

2π
e−

1
2y1

∫ √
y1

−√
y1

(
y1 − y22

)−1/2
dy2.

From the hint, ∫
1√

y1 − y22
dy2 = c+ arcsin

(
y2√
y1

)
,

and, clearly, arcsin (1) = π/2 and arcsin (−1) = −π/2, so that

fY1 (y1) =
1

2
exp (−y1/2) I(0,∞) (y1) ,

where the indicator follows from the definition of Y1 =
∑2

i=1 X
2
i . Thus, as in Example 9.12,

Y1 ∼ χ2
2.

b) This integral is, using v = (y0 − u) /y0, u = (1− v) y0, du = −y0dv,

J =

∫ y0

0

um/2−1 (y0 − u)
−1/2

du = −
∫ 0

1

((1− v) y0)
m/2−1

(vy0)
−1/2

y0dv

= y
(m−1)/2
0

∫ 1

0

v(1/2)−1 (1− v)
m/2−1

dv

= y
(m−1)/2
0 B

(
1

2
,
m

2

)
= y

(m−1)/2
0

Γ (1/2) Γ (m/2)

Γ ((m+ 1) /2)
.
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c) From the result using n = 2, one might guess that the general case might lead to Y1 ∼ χ2
n,

which is true. Now Xi = g−1
i (Y) = Yi, i = 2, . . . , n and X1 = g−1

1 (Y) = ±
√
Y1 −

∑n
i=2 Y

2
i .

We again need to split the support of X into two regions as before, but we have seen for the

n = 2 case that the components are the same. Thus,

fY (y) = 2
∣∣J−1

∣∣−1
fX (x) ,

where we use J−1 instead of J because it is algebraically more convenient. We have

J−1 =


∂y1/∂x1 ∂y1/∂x2 · · · ∂y1/∂xn

∂y2/∂x1 ∂y2/∂x2 · · · ∂y2/∂xn

...
...

. . .
...

∂yn/∂x1 ∂yn/∂x2 · · · ∂yn/∂xn

 =


2x1 2x2 · · · 2xn

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

 ,

with determinant
∣∣J−1

∣∣ = 2x1 = 2

√
Y1 −

∑n
i=2 Y

2
i . Then, defining

D = y1 −
n∑

i=2

y2i

for convenience,
∣∣J−1

∣∣−1
= D−1/2/2 and

fY (y) = 2 · 1
2
D−1/2 1

(2π)
n/2

exp

{
−1

2

(
D +

n∑
i=2

y2i

)}
ISY

(y)

= D−1/2 1

(2π)
n/2

e−
1
2y1ISY

(y) . (S-9.1)

(To check, with n = 2 and no indicator functions, this reduces to

fY1,Y2 (y 1, y2) =
(
y1 − y22

)−1/2 1

2π
e−

1
2y1

which agrees with the direct derivation above.)

Inserting D into (S-9.1) and setting up the integral,

fY1 (y1) =
1

(2π)
n/2

e−
1
2y1

∫
· · ·
∫

S

(
y1 −

n∑
i=2

y2i

)− 1
2

dy2 · · · dyn, (S-9.2)

where

S =

{
(y2, . . . , yn) ∈ Rn−1 : 0 <

n∑
i=2

y2i < y1

}
.

We wish to apply Liouville’s result to the integral

I =

∫
· · ·
∫

S

(
y1 −

n∑
i=2

y2i

)− 1
2

dy2 · · · dyn,

which we rewrite as

I =

∫
· · ·
∫

S

(
y0 −

m∑
i=1

y2i

)− 1
2

dy1 · · · dym,

where

S =

{
(y1, . . . , ym) ∈ Rm : 0 <

m∑
i=1

y2i < y0

}
and m = n− 1. This is almost in the form of (9.13) when taking pi = 2 and ai = bi = 1, i =

1, . . . ,m, (so that ri = 1/2 and R = m/2) as well as t1 = 0, t2 = y0 and f (u) = (y0 − u)
−1/2

.
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The problem is that the condition xi ≥ 0 in (9.13) is not fulfilled. However, what we can

compute is

I ′ =

∫
· · ·
∫

S′

(
y0 −

m∑
i=1

y2i

)− 1
2

dy1 · · · dym,

where

S ′ =

{
(y1, . . . , ym) ∈ Rm

+ : 0 <
m∑
i=1

y2i < y0

}
,

i.e., each yi is restricted to be positive. Then, via the symmetry of the standard normal

distribution about zero and the fact that each yi enters the function f as y2i , we see that

I = 2mI ′. Now, using (9.13),

I = 2mI ′ = 2m
(1/2)

m
πm/2

Γ (m/2)

∫ y0

0

um/2−1 (y0 − u)
−1/2

du =
πm/2

Γ (m/2)
J,

where the integral J was shown above to be

J = y
(m−1)/2
0

Γ (1/2) Γ (m/2)

Γ ((m+ 1) /2)
.

Then, recalling that m = n− 1,

I =
πm/2

Γ (m/2)
y
(m−1)/2
0

Γ (1/2) Γ (m/2)

Γ ((m+ 1) /2)
=

πn/2

Γ (n/2)
y
n/2−1
0 .

Renaming y0 back to y1, (S-9.2) gives

fY1 (y1) =
e−y1/2

(2π)
n/2

πn/2

Γ (n/2)
y
n/2−1
1 =

1

2n/2Γ (n/2)
e−y1/2y

n/2−1
1 ,

which is the χ2
n density.

Solution to Problem 9.7:

a) It follows directly from (A.166) and (9.1) that fR,Θ (r, θ) = rfX,Y (x, y), which yields (9.14).

b) From (7.65), this is

fS (s) = fR (r)

∣∣∣∣drds
∣∣∣∣ = re−r2/2

(
1

2
s−1/2

)
I(0,∞)

(
s1/2

)
=

1

2
e−s/2I(0,∞) (s) ,

so that S ∼ Exp (1/2).

c) For positive u,

Pr (−2 lnU1 < u) = Pr (lnU1 > −u/2) = Pr (U1 > exp (−u/2))
= 1− exp (−u/2) ,

which is the survivor function of an Exp (1/2) random variable.

d) As the inverse of the polar coordinate transformation is X = R cosΘ and Y = R sinΘ, two iid

N (0, 1) r.v.s can be generated by setting

X = R cosΘ =
√
R2 cosΘ =

√
−2 lnU1 cos (2πU2)

and similarly for Y , which yield (9.9).
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Solution to Problem 9.8: From Example 9.3, S ∼ Gam(n, λ). We now show that S | (X1 = x) is a

location shifted gamma random variable: With Z =
∑n

i=2 Xi ∼ Gam(n− 1, λ) and Y = (S | X1) =

(Z + x), a simple transformation gives

fY (y) = fZ (z)
dz

dy
=

λn−1

Γ (n− 1)
(y − x)

(n−1)−1
e−λ(y−x).

From Bayes’ theorem and the fact that X1 ≤ S, we obtain

fX1|S (x | s) =
fS|X1

(s | x) fX1 (x)

fS (s)
=

λn−1

Γ(n−1) (s− x)
n−2

e−λ(s−x)λe−λx

λn

Γ(n)s
n−1e−λs

=
n− 1

sn−1
(s− x)

n−2 I(0,s) (x) , n > 1.

For the expected value, use substitution u = s− x to get

E [X1 | S = s] =
n− 1

sn−1

∫ s

0

x (s− x)
n−2

dx = −n− 1

sn−1

∫ 0

s

(s− u)un−2du

=
n− 1

sn−1
s

∫ s

0

un−2du− n− 1

sn−1

∫ s

0

un−1du = s− n− 1

sn−1

sn

n
=

s

n
.

Similarly, the distribution function is

FX1|S (t) =

∫ t

0

fX1|S (x | s) I(0,s) (t) dx+ I[s,∞) (t)

= 1− (s− t)
n−1

sn−1
I(0,s) (t) + I[s,∞) (t) .
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